9
Views
190
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Coordinate Regulation of IκB Kinases by Mitogen-Activated Protein Kinase Kinase Kinase 1 and NF-κB-Inducing Kinase

, &
Pages 7336-7343 | Received 01 May 1998, Accepted 16 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Baeuerle, P. A., and T. Henkel 1994. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12: 141–179.
  • Baeuerle, P. A., and D. Baltimore 1996. NF-κB: ten years after. Cell 87: 13–20.
  • Baldwin, A. S. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14: 649–683.
  • Barnes, P. J., and M. Karin 1997. Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336: 1066–1071.
  • Brockman, J. A., D. C. Scherer, T. A. McKinsey, S. M. Hall, X. Qi, W. Y. Lee, and D. W. Ballard 1995. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15: 2809–2818.
  • Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and U. Siebenlist 1995. Control of IκB-α proteolysis by site-specific, signal-induced phosphorylation. Science 267: 1485–1488.
  • Derijard, B., J. Raingeaud, T. Barrett, I. H. Wu, J. Han, R. J. Ulevitch, and R. J. Davis 1995. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267: 682–685.
  • DiDonato, J. A., F. Mercurio, C. Rosette, J. Wu-Li, H. Suyang, S. Ghosh, and M. Karin 1996. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16: 1295–1304.
  • DiDonato, J. A., M. Hayakawa, D. M. Rothwarf, E. Zandi, and M. Karin 1997. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388: 548–554.
  • Hirano, M., S. Osada, T. Aoki, S. Hirai, M. Hosaka, J. Inoue, and S. Ohno 1996. MEK kinase is involved in tumor necrosis factor alpha-induced NF-κB activation and degradation of IκB-α. J. Biol. Chem. 271: 13234–13238.
  • Holland, P. M., M. Suzanne, J. S. Campbell, S. Noselli, and J. A. Cooper 1997. MKK7 is a stress-activated mitogen-activated protein kinase kinase functionally related to hemipterous. J. Biol. Chem. 272: 24994–24998.
  • Lange-Carter, C. A., C. M. Pleiman, A. M. Gardner, K. J. Blumer, and G. L. Johnson 1993. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260: 315–319.
  • Lee, F. S., J. Hagler, Z. J. Chen, and T. Maniatis 1997. Activation of the IκBα kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88: 213–222.
  • Lee, F. S., R. T. Peters, L. C. Dang, and T. Maniatis 1998. MEKK1 activates both IκB kinase a and IκB kinase b. Proc. Natl. Acad. Sci. USA 95: 9319–9324.
  • Lin, A., A. Minden, H. Martinetto, F. X. Claret, C. Lange-Carter, F. Mercurio, G. L. Johnson, and M. Karin 1995. Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268: 286–290.
  • Ling, L., Z. Cao, and D. V. Goeddel 1998. NF-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc. Natl. Acad. Sci. USA 95: 3792–3797.
  • Liu, Z. G., H. Hsu, D. V. Goeddel, and M. Karin 1996. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 87: 565–576.
  • Lu, X., S. Nemoto, and A. Lin 1997. Identification of c-Jun NH2-terminal protein kinase (JNK)-activating kinase 2 as an activator of JNK but not p38. J. Biol. Chem. 272: 24751–24754.
  • Malinin, N. L., M. P. Boldin, A. V. Kovalenko, and D. Wallach 1997. MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 385: 540–544.
  • Mansour, S. J., W. T. Matten, A. S. Hermann, J. M. Candia, S. Rong, K. Fukasawa, G. F. Vande Wound, and N. G. Ahn 1994. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265: 966–970.
  • Mercurio, F., H. Zhu, B. W. Murray, A. Shevchenko, B. L. Bennett, J. Li, D. B. Young, M. Barbosa, M. Mann, A. Manning, and A. F. Rao 1997. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278: 860–866.
  • Minden, A., A. Lin, M. McMahon, C. Lange-Carter, B. Derijard, R. J. Davis, G. L. Johnson, and M. Karin 1994. Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 266: 1719–1723.
  • Nakano, H., M. Shindo, S. Sakon, S. Nishinaka, M. Mihara, H. Yagita, and K. Okumura 1998. Differential regulation of IκB kinase α and β by two upstream kinases, NF-κB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase 1. Proc. Natl. Acad. Sci. USA 95: 3537–3542.
  • Nemoto, S., and A. Lin. Unpublished results.
  • Regnier, C. H., H. Y. Song, X. Gao, D. V. Goeddel, Z. Cao, and M. Rothe 1997. Identification and characterization of an IκB kinase. Cell 90: 373–383.
  • Sanchez, I., R. T. Hughes, B. J. Mayer, K. Yee, J. R. Woodgett, J. Avruch, J. M. Kyriakis, and L. I. Zon 1994. Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature 372: 794–798.
  • Song, H. Y., C. H. Regnier, C. J. Kirschning, T. M. Ayres, D. V. Goeddel, and M. Rothe 1997. TNF-mediated kinase cascades: bifurcation of NF-κB and JNK/SAPK pathways at TRAF2. Proc. Natl. Acad. Sci. USA 94: 9792–9796.
  • Stancovski, I., and D. Baltimore 1997. NF-κB activation: the IκB kinase revealed? Cell 91: 299–302.
  • Thanos, D., and T. Maniatis 1995. NF-κB: a lesson in family values. Cell 80: 529–532.
  • Tournier, C., A. J. Whitmarsh, J. Cavanagh, T. Barrett, and R. J. Davis 1997. Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase. Proc. Natl. Acad. Sci. USA 94: 7337–7342.
  • Traenckner, E. B., S. Wilk, and P. A. Baeuerle 1994. A proteasome inhibitor prevents activation of NF-κB and stabilizes a newly phosphorylated form of IκBα that is still bound to NF-κB. EMBO J. 13: 5433–5441.
  • Verma, I. M., J. K. Stevenson, E. M. Schwarz, D. Van Antwerp, and S. Miyamoto 1995. Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 9: 2723–2735.
  • Whiteside, T., M. K. Ernst, O. LeBail, C. Laurent-Winter, N. Rice, and A. Israel 1995. N- and C-terminal sequences control degradation of MAD3/IκBα in response to inducers of NF-κB activity. Mol. Cell. Biol. 15: 5339–5345.
  • Woronicz, J. D., X. Gao, Z. Cao, M. Rothe, and D. V. Goeddel 1997. IκB kinase-β: NF-κB activation and complex formation with IκB kinase α and NIK. Science 278: 866–869.
  • Wu, Z., J. Wu, E. Jacinto, and M. Karin 1997. Molecular cloning and characterization of human JNKK2, a novel Jun NH2-terminal kinase-specific kinase. Mol. Cell. Biol. 17: 7407–7416.
  • Xu, S., D. J. Robbins, L. B. Christerson, J. M. English, C. A. Vanderbilt, and M. H. Cobb 1996. Cloning of rat MEK kinase 1 cDNA reveals an endogenous membrane-associated 195-kDa protein with a large regulatory domain. Proc. Natl. Acad. Sci. USA 93: 5291–5295.
  • Yin, M.-J., L. B. Christerson, Y. Yamamoto, Y.-T. Kwak, S. Xu, F. Mercurio, M. Barbosa, M. H. Cobb, and R. B. Gaynor 1998. HTLV-1 Tax protein binds to MEKK1 to stimulate IκB kinase activity and NF-κB activation. Cell 93: 875–884.
  • Zandi, E., D. M. Rothwarf, M. Delhase, M. Hayakawa, and M. Karin 1997. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 91: 243–252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.