7
Views
68
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Cns1 Is an Essential Protein Associated with the Hsp90 Chaperone Complex in Saccharomyces cerevisiae That Can Restore Cyclophilin 40-Dependent Functions in cpr7ΔCells

, &
Pages 7353-7359 | Received 25 Jun 1998, Accepted 03 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Barent, R. L., S. C. Nair, C. C. Damon, Y. Ruan, R. A. Rimerman, J. Fulton, Y. Zhang, and D. F. Smith 1998. Analysis of FKBP51/FKBP52 chimeras and mutants for Hsp90 binding and association with progesterone receptor complexes. Mol. Endocrinol 12: 342–354.
  • Baur, A., I. Schaaff-Gerstenschlager, E. Boles, T. Miosga, M. Rose, and F. K. Zimmermann 1993. Sequence of a 4.8 kb fragment of Saccharomyces cerevisiae chromosome II including three essential open reading frames. Yeast 9: 289–293.
  • Bohen, S. P., A. Kralli, and K. R. Yamamoto 1995. Hold’em and fold’em: chaperones and signal transduction. Science 268: 1303–1304.
  • Bohen, S. P., and K. R. Yamamoto 1994. Modulation of steroid receptor signal transduction by heat shock proteins The biology of heat shock proteins and molecular chaperones. In: Morimoto, R. I., A. Tissiérres, and C. Georgopoulos313–334Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Borkovich, K. A., F. W. Farrelly, D. B. Finkelstein, J. Taulien, and S. Lindquist 1989. Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperature. Mol. Cell. Biol. 9: 3919–3930.
  • Bresnick, E. H., F. C. Dalman, E. R. Sanchez, and W. B. Pratt 1989. Evidence that the 90-kDa heat shock protein is necessary for the steroid binding conformation of the L cell glucocorticoid receptor. J. Biol. Chem. 264: 4992–4997.
  • Brugge, J. S. 1986. Interaction of the Rous sarcoma virus protein pp60src with the cellular proteins pp50 and pp90. Curr. Top. Microbiol. Immunol. 123: 1–22.
  • Caplan, A. J. 1997. Yeast molecular chaperones and the mechanism of steroid hormone action. Trends Endocrinol. Metab. 8: 271–276.
  • Chang, H.-C. J., and S. Lindquist 1994. Conservation of Hsp90 macromolecular complexes in Saccharomyces cerevisiae. J. Biol. Chem. 269: 24983–24988.
  • Chang, H.-C. J., D. F. Nathan, and S. Lindquist 1997. In vivo analysis of the Hsp90 cochaperone Sti1 (p60). Mol. Cell. Biol. 17: 318–325.
  • Chen, M. S., A. M. Silverstein, W. B. Pratt, and M. Chinkers 1996. The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant. J. Biol. Chem. 271: 32315–32320.
  • Chen, S., V. Prapapanich, R. A. Rimerman, B. Honore, and D. F. Smith 1996. Interactions of p60, a mediator of progesterone receptor assembly, with heat shock proteins Hsp90 and Hsp70. Mol. Endocrinol. 10: 682–693.
  • Cutforth, T., and G. M. Rubin 1994. Mutations in Hsp83 and cdc37 impair signalling by the sevenless receptor tyrosine kinase in Drosophila. Cell 77: 1027–1036.
  • Dolinski, K., M. E. Cardenas, and J. Heitman 1998. CNS1 encodes an essential p60/Sti1 homolog in Saccharomyces cerevisiae that suppresses cyclophilin 40 mutations and interacts with Hsp90. Mol. Cell. Biol. 18: 7344–7352.
  • Dolinski, K., S. Muir, M. Cardenas, and J. Heitman 1997. All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94: 13093–13098.
  • Duina, A. A., H.-C. J. Chang, J. A. Marsh, S. Lindquist, and R. F. Gaber 1996. A cyclophilin function in Hsp90-dependent signal transduction. Science 274: 1713–1715.
  • Duina, A. A., H. M Kalton, and R. F. Gaber 1998. Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response. J. Biol. Chem. 273: 18974–18978.
  • Duina, A. A., J. A. Marsh, and R. F. Gaber 1996. Identification of two CyP-40-like cyclophilins in Saccharomyces cerevisiae, one of which is required for normal growth. Yeast 12: 943–952.
  • Duina, A. A., J. A. Marsh, R. B. Kurtz, H.-C. J. Chang, S. Lindquist, and R. F. Gaber 1998. The peptidyl-prolyl isomerase domain of the CyP-40 cyclophilin homolog Cpr7 is not required to support growth or glucocorticoid receptor activity in Saccharomyces cerevisiae. J. Biol. Chem. 273: 10819–10822.
  • Fang, Y., A. E. Fliss, J. Rao, and A. J. Caplan 1998. SBAI encodes a yeast Hsp90 cochaperone that is homologous to vertebrate p23 proteins. Mol. Cell. Biol. 18: 3727–3734.
  • Freeman, B. C., D. O. Toft, and R. I. Morimoto 1996. Molecular chaperone machines: chaperone activities of the cyclophilin Cyp-40 and the steroid aporeceptor-associated protein p23. Science 274: 1718–1720.
  • Galat, A. 1993. Peptidylproline cis-trans-isomerases: immunophilins. Eur. J. Biochem. 216: 689–707.
  • Garcia-Cardena, G., R. Fan, V. Shah, R. Sorrentino, G. Cirino, A. Papapetropoulos, and W. C. Sessa 1998. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392: 821–824.
  • Hirano, T., N. Kinoshita, K. Morikawa, and M. Yanagida 1990. Snap helix with knob and hole: essential repeats in S. pombe nuclear protein nuc2+. Cell 60: 319–328.
  • Hutchison, K. A., K. D. Dittmar, M. J. Czar, and W. B. Pratt 1994. Proof that Hsp70 is required for assembly of the glucocorticoid receptor into a heterocomplex with Hsp90. J. Biol. Chem. 269: 5043–5049.
  • James, P., J. Halladay, and E. A. Craig 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144: 1425–1436.
  • Johnson, J. L., and D. O. Toft 1994. Novel chaperone complex for steroid receptors involving heat shock proteins, immunophilins, and p23. J. Biol. Chem. 269: 24989–24993.
  • Kimura, Y., I. Yahara, and S. Lindquist 1995. Role of the protein chaperone Ydj1 in establishing Hsp90-mediated signal transduction pathways. Science 268: 1362–1365.
  • Marks, A. R. 1996. Cellular functions of immunophilins. Physiol. Rev. 76: 631–649.
  • Miyata, Y., and I. Yahara 1992. The 90-kDa heat shock protein, Hsp90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. J. Biol. Chem. 267: 7042–7047.
  • Nair, S. C., E. J. Toran, R. A. Rimerman, S. Hjermstad, T. E. Smithgall, and D. F. Smith 1996. A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 1: 237–250.
  • Nathan, D., and S. Lindquist 1995. Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol. Cell. Biol. 15: 3917–3925.
  • Nathan, D. F., M. Harju Vos, and S. Lindquist 1997. In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc. Natl. Acad. Sci. USA 94: 12949–12956.
  • Nicolet, C. M., and E. A. Craig 1989. Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 3638–3646.
  • Owens-Grillo, J. K., M. J. Czar, K. A. Hutchison, K. Hoffmann, G. H. Perdew, and W. B. Pratt 1996. A model of protein targeting mediated by immunophilins and other proteins that bind to hsp90 via tetratricopeptide repeat domains. J. Biol. Chem. 271: 13468–13475.
  • Owens-Grillo, J. K., K. Hoffmann, K. A. Hutchison, A. W. Yem, Deibel M. R., Jr., R. E. Handschumacher, and W. B. Pratt 1995. The cyclosporin A-binding immunophilin CyP-40 and the FK506-binding immunophilin hsp56 bind to a common site on hsp90 and exist in independent cytosolic heterocomplexes with the untransformed glucocorticoid receptor. J. Biol. Chem. 270: 20479–20484.
  • Pratt, W. B. 1993. The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J. Biol. Chem. 268: 21455–21458.
  • Pratt, W. B., and D. O. Toft 1997. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocrine Rev. 18: 306–360.
  • Ratajczak, T., and A. Carrello 1996. Cyclophilin 40 (CyP-40), mapping of its hsp90 binding domain and evidence that FKBP52 competes with CyP-40 for hsp90 binding. J. Biol. Chem. 271: 2961–2965.
  • Redeuilh, G., B. Moncharmont, C. Secco, and E. E. Baulieu 1987. Subunit composition of the molybdate-stabilized “8-9 S” nontransformed estradiol receptor purified from calf uterus. J. Biol. Chem. 262: 6969–6975.
  • Rose, D. W., R. E. Wettenhall, W. Kudlicki, G. Kramer, and B. Hardesty 1987. The 90-kilodalton peptide of the heme-regulated eIF-2 alpha kinase has sequence similarity with the 90-kilodalton heat shock protein. Biochemistry 26: 6583–6587.
  • Rutherford, S. L., and C. S. Zuker 1994. Protein folding and the regulation of signaling pathways. Cell 79: 1129–1132.
  • Sanchez, E. R., D. O. Toft, M. J. Schlesinger, and W. B. Pratt 1985. Evidence that the 90-kDa phosphoprotein associated with the untransformed L-cell glucorcorticoid receptor is a murine heat shock protein. J. Biol. Chem. 86: 1123–1127.
  • Schuh, S., W. Yonemoto, J. Brugge, V. J. Bauer, R. M. Riehl, W. P. Sullivan, and D. O. Toft 1985. A 90,000-dalton binding protein common to both steroid receptors and the Rous sarcoma virus transforming protein, pp60v-src. J. Biol. Chem. 260: 14292–14296.
  • Shue, G., and D. S. Kohtz 1994. Structural and functional aspects of basic helix-loop-helix protein folding by heat shock protein 90. J. Biol. Chem. 269: 2707–2711.
  • Silverstein, A. M., M. D. Galigniana, M. S. Chen, J. K. Owens-Grillo, M. Chinkers, and W. B. Pratt 1997. Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin. J. Biol. Chem. 272: 16224–16230.
  • Smith, D. F. 1993. Dynamics of heat shock protein 90-progesterone receptor binding and disactivation loop model for steroid receptor complexes. Mol. Endocrinol. 7: 1418–1429.
  • Smith, D. F., L. Whitesell, S. C. Nair, S. Chen, V. Prapapanich, and R. A. Rimerman 1995. Progesterone receptor structure and function altered by geldanamycin, and Hsp90-binding agent. Mol. Cell. Biol. 15: 6804–6812.
  • Sorger, P. K., and H. R. Pelham 1987. Purification and characterization of a heat-shock element binding protein from yeast. EMBO J. 6: 3035–3041.
  • Stancato, L. F., Y.-H. Chow, K. A. Hutchison, G. H. Perdew, R. Jove, and W. B. Pratt 1993. Raf exists in a native heterocomplex with Hsp90 and p50 that can be reconstituted in a cell-free system. J. Biol. Chem. 268: 21711–21716.
  • Stear, J., and R. F. Gaber. Unpublished data.
  • Wartmann, M., and R. J. Davis 1994. The native structure of the activated Raf protein kinase is a membrane-bound multi-subunit complex. J. Biol. Chem. 268: 21711–21716.
  • Wiech, H., J. Buchner, R. Zimmermann, and U. Jakob 1992. Hsp90 chaperone protein folding in vitro. Nature 358: 169–170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.