15
Views
47
CrossRef citations to date
0
Altmetric
Gene Expression

Highly Conserved RNA Sequences That Are Sensors of Environmental Stress

, , , , , , & show all
Pages 7371-7382 | Received 08 Jun 1998, Accepted 19 Aug 1998, Published online: 28 Mar 2023

REFERENCES

  • Amara, F. M., F. Y. Chen, and J. A. Wright 1993. A novel transforming growth factor-beta 1 responsive cytoplasmic trans-acting factor binds selectively to the 3′-untranslated region of mammalian ribonucleotide reductase R2 mRNA: role in message stability. Nucleic Acids Res. 21: 4803–4809.
  • Atkins, J. F., and R. F. Gesteland 1996. Regulatory recoding Translational control. In: Hershey, J. W. B., M. B. Mathews, and N. Sonenberg653–684Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Binder, R., J. A. Horowitz, J. P. Basilion, D. M. Koeller, R. D. Klausner, and J. B. Harford 1994. Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 3′ UTR and does not involve poly(A) tail shortening. EMBO J. 13: 1969–1980.
  • Blau, H. M. 1992. Differentiation requires continuous active control. Annu. Rev. Biochem. 61: 1213–1230.
  • Blau, H. M., and D. Baltimore 1991. Differentiation requires continuous regulation. J. Cell Biol. 112: 781–783.
  • Blau, H. M., G. K. Pavlath, E. C. Hardeman, C. P. Chiu, L. Silberstein, S. G. Webster, S. C. Miller, and C. Webster 1985. Plasticity of the differentiated state. Science 230: 758–766.
  • Caput, D., B. Beutler, K. Hartog, R. Thayer, S. Brown-Shimer, and A. Cerami 1986. Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. USA 83: 1670–1674.
  • Chen, C. Y., and A. B. Shyu 1995. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20: 465–470.
  • Ch’ng, J. L., D. L. Shoemaker, P. Schimmel, and E. W. Holmes 1990. Reversal of creatine kinase translational repression by 3′ untranslated sequences. Science 248: 1003–1006.
  • Connell, G. J., and L. Simpson 1998. Role of RNA structure in RNA editing RNA structure and function. In: Simons, R. W., and M. Grunberg-Manago641–667Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Coutavas, E. E., C. M. Hsieh, M. Ren, G. T. Drivas, M. G. Rush, and P. D. D’Eustachio 1994. Tissue-specific expression of Ran isoforms in the mouse. Mamm. Genome 5: 623–628.
  • Crawford, H. C., and L. M. Matrisian 1996. Mechanisms controlling the transcription of matrix metalloproteinase genes in normal and neoplastic cells. Enzyme Protein 49: 20–37.
  • Curtis, D., R. Lehmann, and P. D. Zamore 1995. Translational regulation in development. Cell 81: 171–178.
  • Davis, L. G., M. D. Dibner, and J. F. Battey 1986. Basics methods in molecular biology. Elsevier Science Publishing, New York, N.Y.
  • Davis, S., and J. C. Watson 1996. In vitro activation of the interferon-induced, double-stranded RNA-dependent protein kinase PKR by RNA from the 3′-untranslated regions of human alpha-tropomyosin. Proc. Natl. Acad. Sci. USA 93: 508–613.
  • Decker, C. J., and R. Parker 1993. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7: 1632–1643.
  • de Sauvage, F., V. Kruys, O. Marinx, G. Huez, and J. N. Octave 1992. Alternative polyadenylation of the amyloid protein precursor mRNA regulates translation. EMBO J. 11: 3099–3103.
  • Deuschle, U., W. K. Meyer, and H. J. Thiesen 1995. Tetracycline-reversible silencing of eukaryotic promoters. Mol. Cell. Biol. 15: 1907–1914.
  • Duret, L., and P. Bucher 1997. Searching for regulatory elements in human noncoding sequences. Curr. Opin. Struct. Biol. 7: 399–406.
  • Duret, L., F. Dorkeld, and C. Gautier 1993. Strong conservation of non-coding sequences during vertebrates evolution: potential involvement in post-transcriptional regulation of gene expression. Nucleic Acids Res. 21: 2315–2322.
  • Ferrari, S., E. Tagliafico, M. D’Inca, G. Ceccherelli, R. Manfredini, L. Selleri, A. Donelli, S. Sacchi, G. Torelli, and U. Torelli 1990. Ratios between the abundance of messenger RNA and the corresponding protein of two growth-related genes, c-myc and vimentin, in leukemia blast cells. Cancer Res. 50: 1988–1991.
  • Friedrich, G., and P. Soriano 1991. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5: 1513–1523.
  • Gallie, D. R., V. Walbot, and J. N. Feder 1992. GUS as a useful reporter gene in animal cells GUS protocols. In: Gallagher, S. R.181–188Academic Press, Inc., San Diego, Calif.
  • Gamarnik, A. V., and R. Andino 1997. Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA. RNA 3: 882–892.
  • Gnarra, J. R., S. Zhou, M. J. Merrill, J. R. Wagner, A. Krumm, E. Papavassiliou, E. H. Oldfield, R. D. Klausner, and W. M. Linehan 1996. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc. Natl. Acad. Sci. USA 93: 10589–10594.
  • Good, P. J. 1995. A conserved family of elav-like genes in vertebrates. Proc. Natl. Acad. Sci. USA 92: 4557–4561.
  • Gossen, M., S. Freundlieb, G. Bender, G. Muller, W. Hillen, and H. Bujard 1995. Transcriptional activation by tetracyclines in mammalian cells. Science 268: 1766–1769.
  • Gradin, K., J. McGuire, R. H. Wenger, I. Kvietikova, M. L. Whitelaw, R. Toftgård, L. Tora, M. Gassmann, and L. Poellinger 1996. Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol. Cell. Biol. 16: 5221–5231.
  • Graeber, T. G., C. Osmanian, T. Jacks, D. E. Housman, C. J. Koch, S. W. Lowe, and A. J. Giaccia 1996. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379: 88–91.
  • Gray, N. K., and M. W. Hentze 1994. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J. 13: 3882–3891.
  • Grens, A., and I. E. Scheffler 1990. The 5′- and 3′-untranslated regions of ornithine decarboxylase mRNA affect the translational efficiency. J. Biol. Chem. 265: 11810–11816.
  • Hentze, M. W., and L. C. Kuhn 1996. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl. Acad. Sci. USA 93: 8175–8182.
  • Hershey, J. W. 1991. Translational control in mammalian cells. Annu. Rev. Biochem. 60: 717–755.
  • Hitoshi, Y., J. Lorens, S. I. Kitada, J. Fisher, M. LaBarge, H. Z. Ring, U. Francke, J. C. Reed, S. Kinoshita, and G. P. Nolan 1998. Toso, a cell surface, specific regulator of Fas-induced apoptosis in T cells. Immunity 8: 461–471.
  • Hockel, M., K. Schlenger, C. Knoop, and P. Vaupel 1991. Oxygenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements. Cancer Res. 51: 6098–6102.
  • Hofmann, A., G. P. Nolan, and H. M. Blau 1996. Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc. Natl. Acad. Sci. USA 93: 5185–5190.
  • Huettenhofer, A., and A. Boeck 1998. RNA structures involved in selenoprotein synthesis RNA structure and function. In: Simons, R. W., and M. Grunberg-Manago603–668Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Hynes, R. O., and A. D. Lander 1992. Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68: 303–322.
  • Izquierdo, J. M., and J. M. Cuezva 1997. Control of the translational efficiency of β-F1-ATPase mRNA depends on the regulation of a protein that binds the 3′ untranslated region of the mRNA. Mol. Cell. Biol. 17: 5255–5268.
  • Jan, E., J. W. Yoon, D. Walterhouse, P. Iannaccone, and E. B. Goodwin 1997. Conservation of the C. elegans tra-2 3′UTR translational control. EMBO J. 16: 6301–6313.
  • Kaspar, R. L., T. Kakegawa, H. Cranston, D. R. Morris, and M. W. White 1992. A regulatory cis element and a specific binding factor involved in the mitogenic control of murine ribosomal protein L32 translation. J. Biol. Chem. 267: 508–514.
  • Kitamura, T., M. Onishi, S. Kinoshita, A. Shibuya, A. Miyajima, and G. P. Nolan 1995. Efficient screening of retroviral cDNA expression libraries. Proc. Natl. Acad. Sci. USA 92: 9146–9150.
  • Koromilas, A. E., S. Roy, G. N. Barber, M. G. Katze, and N. Sonenberg 1992. Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science 257: 1685–1689.
  • Kringstein, A. M., F. M. V. Rossi, A. Hofmann, and H. M. Blau 1998. Graded transcriptional response to different concentrations of a single transactivator. Proc. Natl. Acad. Sci. USA 95: 13670–13675.
  • Kruys, V., O. Marinx, G. Shaw, J. Deschamps, and G. Huez 1989. Translational blockade imposed by cytokine-derived UA-rich sequences. Science 245: 852–855.
  • Le, H., R. L. Tanguay, M. L. Balasta, C. C. Wei, K. S. Browning, A. M. Metz, D. J. Goss, and D. R. Gallie 1997. Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J. Biol. Chem. 272: 16247–16255.
  • L’Ecuyer, T. J., P. C. Tompach, E. Morris, and A. B. Fulton 1995. Transdifferentiation of chicken embryonic cells into muscle cells by the 3′ untranslated region of muscle tropomyosin. Proc. Natl. Acad. Sci. USA 92: 7520–7524.
  • Levy, A. P., N. S. Levy, and M. A. Goldberg 1996. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J. Biol. Chem. 271: 2746–2753.
  • Levy, N. S., M. A. Goldberg, and A. P. Levy 1997. Sequencing of the human vascular endothelial growth factor (VEGF) 3′ untranslated region (UTR): conservation of five hypoxia-inducible RNA-protein binding sites. Biochim. Biophys. Acta 1352: 167–173.
  • Lindstein, T., C. H. June, J. A. Ledbetter, G. Stella, and C. B. Thompson 1989. Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244: 339–343.
  • Lorenzini, E. C., and I. E. Scheffler 1997. Co-operation of the 5′ and 3′ untranslated regions of ornithine decarboxylase mRNA and inhibitory role of its 3′ untranslated region in regulating the translational efficiency of hybrid RNA species via cellular factor. Biochem. J. 326: 361–367.
  • Lorincz, M., M. Roederer, Z. Diwu, L. A. Herzenberg, and G. P. Nolan 1996. Enzyme-generated intracellular fluorescence for single-cell reporter gene analysis utilizing Escherichia coli beta-glucuronidase. Cytometry 24: 321–329.
  • Manzella, J. M., and P. J. Blackshear 1990. Regulation of rat ornithine decarboxylase mRNA translation by its 5′-untranslated region. J. Biol. Chem. 265: 11817–11822.
  • McGary, E. C., I. J. Rondon, and B. S. Beckman 1997. Post-transcriptional regulation of erythropoietin mRNA stability by erythropoietin mRNA-binding protein. J. Biol. Chem. 272: 8628–8634.
  • Meinsma, D., W. Scheper, P. E. Holthuizen, J. L. Van den Brande, and J. S. Sussenbach 1992. Site-specific cleavage of IGF-II mRNAs requires sequence elements from two distinct regions of the IGF-II gene. Nucleic Acids Res. 20: 5003–5009.
  • Mimori, K., M. Mori, T. Shiraishi, S. Tanaka, M. Haraguchi, H. Ueo, C. Shirasaka, and T. Akiyoshi 1998. Expression of ornithine decarboxylase mRNA and c-myc mRNA in breast tumours. Int. J. Oncol. 12: 597–601.
  • Morgenstern, J. P., and H. Land 1990. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18: 3587–3596.
  • Nilsen, T. W. 1998. RNA-RNA interactions in nuclear pre-mRNA splicing RNA structure and function. In: Simons, R. W., and M. Grunberg-Manago279–308Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Nolan, G. P., S. Fiering, J. F. Nicolas, and L. A. Herzenberg 1988. Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-d-galactosidase activity after transduction of Escherichia coli lacZ. Proc. Natl. Acad. Sci. USA 85: 2603–2607.
  • Ostareck-Lederer, A., D. H. Ostareck, N. Standart, and B. J. Thiele 1994. Translation of 15-lipoxygenase mRNA is inhibited by a protein that binds to a repeated sequence in the 3′ untranslated region. EMBO J. 13: 1476–1481.
  • Pelletier, J., and N. Sonenberg 1985. Insertion mutagenesis to increase secondary structure within the 5′ noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell 40: 515–526.
  • Penttinen, R. P., S. Kobayashi, and P. Bornstein 1988. Transforming growth factor beta increases mRNA for matrix proteins both in the presence and in the absence of changes in mRNA stability. Proc. Natl. Acad. Sci. USA 85: 1105–1108.
  • Pfarr, D. S., L. A. Rieser, R. P. Woychik, F. M. Rottman, M. Rosenberg, and M. E. Reff 1986. Differential effects of polyadenylation regions on gene expression in mammalian cells. DNA 5: 115–122.
  • Rastinejad, F., and H. M. Blau 1993. Genetic complementation reveals a novel regulatory role for 3′ untranslated regions in growth and differentiation. Cell 72: 903–917.
  • Rastinejad, F., M. J. Conboy, T. A. Rando, and H. M. Blau 1993. Tumor suppression by RNA from the 3′ untranslated region of alpha-tropomyosin. Cell 75: 1107–1117.
  • Ren, M., A. Villamarin, A. Shih, E. Coutavas, M. S. Moore, M. LoCurcio, V. Clarke, J. D. Oppenheim, P. D’Eustachio, and M. G. Rush 1995. Separate domains of the Ran GTPase interact with different factors to regulate nuclear protein import and RNA processing. Mol. Cell. Biol. 15: 2117–2124.
  • Riviere, I., K. Brose, and R. C. Mulligan 1995. Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. Proc. Natl. Acad. Sci. USA 92: 6733–6737.
  • Ross, J. 1995. mRNA stability in mammalian cells. Microbiol. Rev. 59: 423–450.
  • Seydoux, G. 1996. Mechanisms of translational control in early development. Curr. Opin. Genet. Dev. 6: 555–561.
  • Sierra, J. M., and J. M. Zapata 1994. Translational regulation of the heat shock response. Mol. Biol. Rep. 19: 211–220.
  • Sokolowski, M., C. Zhao, W. Tan, and S. Schwartz 1997. AU-rich mRNA instability elements on human papillomavirus type 1 late mRNAs and c-fos mRNAs interact with the same cellular factors. Oncogene 15: 2303–2319.
  • Spicher, A., A. Etter, V. Bernard, H. Tobler, and F. Muller 1994. Extremely stable transcripts may compensate for the elimination of the gene fert-1 from all Ascaris lumbricoides somatic cells. Dev. Biol. 164: 72–86.
  • Spirin, A. S. 1996. Masked and translatable messenger ribonucleoproteins in higher eukaryotes Translational control. In: Hershey, J. W. B., M. B. Mathews, and N. Sonenberg319–334Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Springer, M. L., and H. M. Blau 1997. High-efficiency retroviral infection of primary myoblasts. Somat. Cell. Mol. Genet. 23: 203–209.
  • St. Johnston, D. 1995. The intracellular localization of messenger RNAs. Cell 81: 161–170.
  • Sun, Y., J. Lin, A. E. Katz, and P. B. Fisher 1997. Human prostatic carcinoma oncogene PTI-1 is expressed in human tumor cell lines and prostate carcinoma patient blood samples. Cancer Res. 57: 18–23.
  • Tarun, S. Z.Jr., and A. B. Sachs 1996. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15: 7168–7177.
  • Tarun, S. Z.Jr., S. E. Wells, J. A. Deardorff, and A. B. Sachs 1997. Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc. Natl. Acad. Sci. USA 94: 9046–9051.
  • Tharun, S., and R. Parker 1997. Mechanisms of mRNA turnover in eukaryotic cells mRNA metabolism and post-transcriptional gene regulation. In: Harford, J. B., and D. R. Morris181–200Wiley-Liss, Inc., New York, N.Y.
  • Theodorakis, N. G., and D. W. Cleveland 1996. Translationally coupled degradation of mRNA in eukaryotes Translational control. In: Hershey, J. W. B., M. B. Mathews, and N. Sonenberg631–652Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Thomas, T., D. T. Kiang, O. A. Janne, and T. J. Thomas 1991. Variations in amplification and expression of the ornithine decarboxylase gene in human breast cancer cells. Breast Cancer Res. Treat. 19: 257–267.
  • Vaux, D. L. 1993. Toward an understanding of the molecular mechanisms of physiological cell death. Proc. Natl. Acad. Sci. USA 90: 786–789.
  • Wang, G. L., B. H. Jiang, E. A. Rue, and G. L. Semenza 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 92: 5510–5514.
  • Webster, K. A., D. J. Discher, and N. H. Bishopric 1993. Induction and nuclear accumulation of fos and jun proto-oncogenes in hypoxic cardiac myocytes. J. Biol. Chem. 268: 16852–16858.
  • Weiss, I. M., and S. A. Liebhaber 1994. Erythroid cell-specific determinants of alpha-globin mRNA stability. Mol. Cell. Biol. 14: 8123–8132.
  • Wilson, T., and R. Treisman 1988. Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3′ AU-rich sequences. Nature 336: 396–399.
  • Yang, Q., P. J. McDermott, E. Duzic, C. W. Pleij, J. D. Sherlock, and S. M. Lanier 1997. The 3′-untranslated region of the alpha2C-adrenergic receptor mRNA impedes translation of the receptor message. J. Biol. Chem. 272: 15466–15473.
  • You, Y., C. Y. Chen, and A. B. Shyu 1992. U-rich sequence-binding proteins (URBPs) interacting with a 20-nucleotide U-rich sequence in the 3′-untranslated region of c-fos mRNA may be involved in the first step of c-fos mRNA degradation. Mol. Cell. Biol. 12: 2931–2940.
  • Yu, S. F., T. von Ruden, P. W. Kantoff, C. Garber, M. Seiberg, U. Ruther, W. F. Anderson, E. F. Wagner, and E. Gilboa 1986. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc. Natl. Acad. Sci. USA 83: 3194–3198.
  • Zehner, Z. E., R. K. Shepherd, J. Gabryszuk, T. F. Fu, M. Al-Ali, and W. M. Holmes 1997. RNA-protein interactions within the 3′ untranslated region of vimentin mRNA. Nucleic Acids Res. 25: 3362–3370.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.