15
Views
17
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Distinct Subclasses of Small GTPases Interact with Guanine Nucleotide Exchange Factors in a Similar Manner

, &
Pages 7444-7454 | Received 13 May 1998, Accepted 20 Aug 1998, Published online: 28 Mar 2023

REFERENCES

  • Ballester, R., T. Michaeli, K. Ferguson, H.-P. Xu, F. McCormick, and M. Wigler 1989. Genetic analysis of mammalian GAP expressed in yeast. Cell 59: 681–686.
  • Becker, J., T. J. Tan, H.-H. Trepte, and D. Gallwitz 1991. Mutational analysis of the putative effector domain of the GTP-binding YPT1 protein in yeast suggests specific regulation by a novel GAP activity. EMBO J. 10: 785–792.
  • Boguski, M. S., and F. McCormick 1993. Proteins regulating Ras and its relatives. Nature 366: 643–654.
  • Bokoch, G. M., and C. J. Der 1993. Emerging concepts in the Ras superfamily of GTP-binding proteins. FASEB J. 7: 750–759.
  • Boriack-Sjodin, P. A., M. Margarit, D. Bar-Sagi, and J. Kuriyan 1998. The structural basis of the activation of Ras by Sos. Nature (London) 394: 337–343.
  • Bourne, H. R., D. A. Sanders, and F. McCormick 1991. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127.
  • Broek, D., T. Toda, T. Michaili, L. Levin, C. Birchmeier, M. Zollar, S. Powers, and M. Wigler 1987. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48: 789–799.
  • Burstein, E. S., and I. G. Macara 1992. Characterization of a guanine nucleotide-releasing factor and a GTPase-activating protein that are specific for the ras-related protein p25rab3A. Proc. Natl. Acad. Sci. USA 89: 1154–1158.
  • Burstein, E. S., W. H. Brondyk, and I. G. Macara 1992. Amino acid residues in the ras-like GTPase Rab3A that specify sensitivity to factors that regulate the GTP/GDP cycling of Rab3A. J. Biol. Chem. 267: 22715–22718.
  • Burton, J. L., D. Roberts, M. Montaldi, P. Novick, and P. DeCamilli 1993. A mammalian guanine nucleotide releasing protein enhances function of yeast secretory protein Sec4. Nature 361: 464–467.
  • Burton, J. L., V. Slepnev, and P. V. De Camilli 1997. An evolutionarily conserved domain in a subfamily of Rabs is crucial for the interaction with the guanyl nucleotide exchange factor Mss4. J. Biol. Chem. 272: 3663–3668.
  • Chardin, D. Structural conservation of ras-related proteins and its functional implications GTPases in biology I In: Burton, F. D., and B. Lutz1081993159–176Spring-Verlag KG, Berlin, Germany.
  • Chen, J., R. Lansford, V. Stewart, F. Young, and F. W. Alt 1993. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl. Acad. Sci. USA 90: 4528–4532.
  • Chen, S. Y., S. Y. Huff, C. C. Lai, C. J. Der, and S. Powers 1994. Ras-15A protein shares highly similar dominant-negative biological properties with Ras-17N and forms a stable, guanine-nucleotide resistant complex with CDC25 exchange factor. Oncogene 9: 2691–2698.
  • Collins, T. L., M. Deckert, and A. Altman 1997. Views on Vav. Immunol. Today 18: 221–225.
  • Crechet, J.-B., A. Bernardi, and A. Parmeggiani 1996. Distal switch II region of Ras2p is required for interaction with guanine nucleotide exchange factor. J. Biol. Chem. 271: 17234–17240.
  • Day, G.-J., and D. Broek. Unpublished results.
  • Fan, W.-T., A. Koch, C. L. de Hoog, N. P. Fam, and M. F. Moran 1998. The exchange factor Ras-GRF2 activates Ras-dependent and Rac-dependent mitogen-activated protein kinase pathways. Curr. Biol. 8: 935–938.
  • Feig, L. A. 1994. Guanine-nucleotide exchange factors: a family of positive regulators of Ras and related GTPases. Curr. Opin. Cell Biol. 6: 204–211.
  • Feig, L. A., and G. M. Cooper 1988. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8: 3235–3243.
  • Freshney, N. W., S. D. Goonesekera, and L. A. Feig 1997. Activation of the exchange factor Ras-GRF by calcium requires an intact Dbl homology domain. FEBS Lett. 407: 111–115.
  • Gallwitz, D., C. Donath, and C. Sander 1983. A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product. Nature (London) 306: 704–707.
  • Gibbs, J. B., and M. S. Marshall 1989. The ras oncogene—an important regulatory element in lower eucaryotic organisms. Microbiol. Rev. 53: 171–185.
  • Goldberg, J. 1998. Personal communication.
  • Hall, A. 1993. Ras-related proteins. Curr. Opin. Cell Biol. 5: 265–268.
  • Han, J., B. Das, W. Wei, L. Van Aelst, R. D. Mosteller, R. Khosravi-Far, J. K. Westwick, C. J. Der, and D. Broek 1997. Lck regulates Vav activation of members of the Rho family of GTPases. Mol. Cell. Biol. 17: 1346–1353.
  • Han, J., and D. Broek. 1998. Personal communication.
  • Haney, S. A., and J. R. Broach 1994. Cdc25p, the guanine nucleotide exchange factor for the Ras proteins of Saccharomyces cerevisiae, promotes exchange by stabilizing Ras in a nucleotide-free state. J. Biol. Chem. 269: 16541–16548.
  • Haubruck, H., C. Disela, P. Wagner, and D. Gallwitz 1987. The ras-related ypt protein is an ubiquitous eukaryotic protein: isolation and sequence analysis of mouse DNA highly homologous to the yeast YPT1 gene. EMBO J. 6: 4049–4053.
  • Horiuchi, H., R. Lippe, H. M. McBride, M. Rubino, P. Woodman, H. Stenmark, V. Rybin, M. Wilm, K. Ashman, M. Mann, and M. Zerial 1997. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90: 1149–1159.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.
  • Jedd, G., C. Richardson, R. Litt, and N. Segev 1995. The YPT1 GTPase is essential for the first two steps of the yeast secretory pathway. J. Cell Biol. 131: 583–590.
  • Jones, S., R. J. Litt, C. J. Richardson, and N. Segev 1995. Requirement of nucleotide exchange factor for Ypt1 GTPase mediated protein transport. J. Cell Biol. 130: 1051–1061.
  • Jung, V., W. Wei, R. Ballester, J. Camonis, S. Mi, L. Van Aelst, M. Wigler, and D. Broek 1994. Two types of RAS mutants that dominantly interfere with activators of RAS. Mol. Cell. Biol. 14: 3707–3718.
  • Khosravi-Far, R., M. A. White, J. K. Westwick, P. A. Solski, M. Chrzanowska-Wodnicka, L. Van Aelst, M. H. Wigler, and C. J. Der 1996. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol. Cell. Biol. 16: 3923–3933.
  • Krengel, U., L. Schlichting, A. Scherer, R. Shumann, M. Frech, J. John, W. Kabsch, E. F. Pai, and A. Wittinghofer 1990. Three-dimensional structures of H-ras p21 mutants: molecular bases for their inability to function as signal switch molecules. Cell 62: 539–548.
  • Lai, C.-C., M. Boguski, D. Broek, and S. Powers 1993. Influence of guanine nucleotides on complex formation between Ras and CDC25 proteins. Mol. Cell. Biol. 13: 1345–1352.
  • Leonardsen, L., J. E. DeClue, H. Lybaek, D. R. Lowy, and B. M. Willumsen 1996. Rasp21 sequences opposite the nucleotide binding pocket are required for GRF-mediated nucleotide release. Oncogene 13: 2177–2187.
  • Lounsbury, K. M., S. A. Richards, K. L. Carey, and I. G. Macara 1996. Mutations within the Ran/TC4 GTPase. Effects on regulatory factor interactions and subcellular localization. J. Biol. Chem. 271: 32834–32841.
  • Lowy, D. R., and B. M. Willumsen 1993. Function and regulation of Ras. Annu. Rev. Biochem. 62: 851–891.
  • Macara, I. G., K. M. Lounsbury, S. A. Richards, C. McKiernan, and D. Bar-Sagi 1996. The ras superfamily of GTPases. FASEB J. 10: 625–630.
  • Marshall, C. J. 1996. Ras effectors. Curr. Opin. Cell Biol. 8: 197–204.
  • Marshall, M. S., and L. A. Hettich 1993. Characterization of ras effector mutant interactions with the NF1-GAP related domain. Oncogene 8: 425–431.
  • McCormick, F. 1994. Activators and effectors of ras p21 proteins. Curr. Opin. Genet. Dev. 4: 71–76.
  • McCormick, F., G. A. Martin, R. Clark, G. Bollag, and P. Polakis 1991. Regulation of ras p21 by GTPase activating proteins. Cold Spring Harbor Symp. Quant. Biol. 56: 237–241.
  • Merkle, T., T. Haizel, T. Matsumoto, K. Harter, G. Dallmann, and F. Nagy 1994. Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein. Plant J. 6: 555–565.
  • Mistou, M. Y., E. Jacquet, P. Poullet, H. Rensland, P. Gideon, I. Schlichting, A. Wittinghofer, and A. Parmeggiani 1992. Mutations of Ha-ras p21 that define important regions for guanine nucleotide dissociation stimulator. EMBO J. 11: 2391–2397.
  • Mossessova, E., J. M. Gulbis, and J. Goldberg 1998. Structure of the guanine nucleotide exchange factor Sec7 domain of human Aron and analysis of the interaction with ARF GTPase. Cell 92: 415–423.
  • Mosteller, R. D., J. Han, and D. Broek 1994. Identification of residues of the H-Ras protein critical for functional interaction with guanine nucleotide exchange factors. Mol. Cell. Biol. 14: 1104–1112.
  • Moya, M., D. Roberts, and P. Novick 1993. DSS4-1 is a dominant suppressor of sec4-8 that encodes a nucleotide exchange protein that aids Sec4p function. Nature 361: 460–463.
  • Munder, T., and P. Furst 1992. The Saccharomyces cerevisiae CDC25 gene product binds specifically to catalytically inactive ras proteins in vivo. Mol. Cell. Biol. 12: 2091–2099.
  • Nagata, K.-I., T. Takemasa, S. Alam, T. Hattori, Y. Watanabe, and Y. Nozawa 1994. Cloning of cDNAs encoding a cell-cycle-regulatory GTP-binding low-Mr (GBLM) protein, Ran/TC4, from micronucleated Tetrahymena thermophila and amicronucleated Tetrahymena pyriformis. Gene 144: 123–125.
  • Nimnual, A. S., B. A. Yatsula, and D. Bar-Sagi 1998. Coupling Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science 279: 560–563.
  • Novick, P., and M. Zerial 1997. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9: 496–504.
  • Nuoffer, C., and W. E. Balch 1994. GTPases: multifunctional molecular switches regulating vesicular traffic. Annu. Rev. Biochem. 63: 949–990.
  • Park, W., R. D. Mosteller, and D. Broek 1994. Amino acid residues in the CDC25 guanine nucleotide exchange factor critical for interaction with Ras. Mol. Cell. Biol. 14: 8117–8122.
  • Poullet, P., J.-B. Crechet, A. Bernardi, and A. Parmeggiani 1995. Properties of the catalytic domain of Sdc25p, a yeast GDP/GTP exchange factor of Ras proteins. Eur. J. Biochem. 227: 537–544.
  • Powers, S., K. O’Neill, and M. Wigler 1989. Dominant yeast and mammalian RAS mutants that interfere with the CDC25-dependent activation of wild-type RAS in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 390–395.
  • Quilliam, L. A., M. M. Hisaka, S. Zhong, A. Lowry, R. D. Mosteller, J. Han, J. K. Drugan, D. Broek, S. L. Campbell, and C. J. Der 1996. Involvement of the switch 2 domain of Ras in its interaction with guanine nucleotide exchange factors. J. Biol. Chem. 271: 11076–11082.
  • Quilliam, L. A., K. Kato, K.-M. Rabun, M.-M. Hisaka, S. Y. Huff, S. Campbell-Burk, and C. J. Der 1994. Identification of residues critical for Ras(17N) growth-inhibitory phenotype and for Ras interaction with guanine nucleotide exchange factors. Mol. Cell. Biol. 14: 1113–1121.
  • Quilliam, L. A., R. Khosravi-Far, S. Y. Huff, and C. J. Der 1995. Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. Bioessays 17: 395–404.
  • Richardson, C. J., S. Jones, R. J. Litt, and N. Segev 1998. GTP hydrolysis is not important for Ypt1 GTPase function in vesicular transport. Mol. Cell. Biol. 18: 827–838.
  • Rodriguez-Viciana, P., P. H. Warne, A. Khwaja, B. M. Marte, D. Pappin, P. Das, M. D. Waterfield, A. Ridley, and J. Downward 1997. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89: 457–467.
  • Rosa, J. L., R. P. Casaroli-Marano, A. J. Buckler, S. Vilaro, and M. Barbacid 1996. p619, a giant protein related to the chromosome condensation regulator RCC1, stimulates guanine nucleotide exchange on ARF1 and Rab proteins. EMBO J. 15: 4262–4273.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schlichting, I., S. C. Almo, G. Rapp, K. Wilson, K. Petratos, A. Lentfer, A. Wittinghofer, W. Kabsch, E. F. Pai, and G. A. Pestko 1990. Time-resolved x-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 345: 309–315.
  • Schweighoffer, F., H. Cai, M. C. Chevallier-Multon, I. Fath, G. Cooper, and B. Tocque 1993. The Saccharomyces cerevisiae SDC25 C-domain gene product overcomes the dominant inhibitory activity of Ha-Ras Asn-17. Mol. Cell. Biol. 13: 39–43.
  • Segal, M., I. Marbach, B. M. Willumsen, and A. Levitzki 1995. Two distinct regions of Ras participate in functional interaction with GDP-GTP exchangers. Eur. J. Biochem. 228: 96–101.
  • Segal, M., B. M. Willumsen, and A. Levitzki 1993. Residues crucial for Ras interaction with GDP-GTP exchangers. Proc. Natl. Acad. Sci. USA 90: 5564–5568.
  • Segev, N., and D. Botstein 1987. The ras-like yeast YPT1 gene is itself essential for growth, sporulation, and starvation response. Mol. Cell. Biol. 7: 2367–2377.
  • Self, A. J., and A. Hall 1995. Measurement of intrinsic nucleotide exchange and GTP hydrolysis rates. Methods Enzymol. 256: 67–76.
  • Sherman, F., G. R. Fink, and J. B. Hicks 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Verrotti, A. C., J.-B. Crechet, F. Di Blasi, G. Seidita, M. G. Mirisola, C. Kavounis, V. Nastopoulos, E. Burderi, E. De Vendittis, A. Parmeggiani, and O. Fasano 1992. RAS residues that are distant from the GDP binding site play a critical role in dissociation factor-stimulated release of GDP. EMBO J. 11: 2855–2862.
  • Vogel, U. S., R. A. Dixon, M. D. Schaber, R. E. Diehl, M. S. Marshall, E. M. Scolnick, I. S. Sigal, and J. B. Gibbs 1988. Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature (London) 335: 90–93.
  • Wada, M., H. H. Nakanishi, A. Satoh, H. Hirano, H. Obaishi, Y. Matsuura, and Y. Takai 1997. Isolation and characterization of a GDP/GTP exchange protein specific for the Rab3 subfamily small G protein. J. Biol. Chem. 272: 3875–3878.
  • Walch-Solimena, C., R. N. Collins, and P. Novick 1997. Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J. Cell Biol. 137: 1495–1509.
  • Wangner, P., C. M. T. Molenaar, A. J. G. Rauth, R. Brokel, H. D. Schmitt, and D. Gallitz 1987. Biochemical properties of the ras-related YPT protein in yeast: a mutational analysis. EMBO J. 6: 2373–2379.
  • Westwick, J. K., Q. T. Lambert, G. J. Clark, M. Symons, L. Van Aelst, R. G. Pestell, and C. J. Der 1997. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol. 17: 1324–1335.
  • White, M. A., C. Nicolette, A. Minden, A. Polverino, L. van Aelst, M. Karin, and M. H. Wigler 1995. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80: 533–541.
  • Whitehead, I. P., S. Campbell, K. L. Rossman, and C. J. Der 1997. Dbl family proteins. Biochim. Biophys. Acta 1332: F1–F23.
  • Ziman, M., and D. Johnson 1994. Genetic evidence for a functional interaction between Saccharomyces cerevisiae CDC24 and CDC42. Yeast 10: 463–474.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.