149
Views
605
CrossRef citations to date
0
Altmetric
Gene Expression

Identification and Characterization of Pancreatic Eukaryotic Initiation Factor 2 α-Subunit Kinase, PEK, Involved in Translational Control

, , , , , & show all
Pages 7499-7509 | Received 27 Apr 1998, Accepted 06 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Abastado, J. P., P. F. Miller, B. M. Jackson, and A. G. Hinnebusch 1991. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis of GCN4 translational control. Mol. Cell. Biol. 11: 486–496.
  • Barber, G. N., R. Jagus, E. F. Meurs, A. G. Hovanessian, and M. G. Katze 1995. Molecular mechanisms responsible for malignant transformation by regulatory and catalytic domain variants of the interferon-induced enzyme RNA-dependent protein kinase. J. Biol. Chem. 270: 17423–17428.
  • Bonner-Weir, S., and F. E. Smith 1994. Islets of langerhans: morphology and its implications Joslin’s diabetes mellitus13th ed.Kahn, C. R., and G. C. Weir15–28Lea & Febiger, Piladelphia, Pa.
  • Cesareni, G., and J. Murray Plasmid vectors carrying the replication origin of filamentous single-stranded phages Genetic engineering: principles and methods In: Setlow, J. K., and A. Hollaender91987135–154Plenum Press, New York, N.Y.
  • Chen, J. J., and I. M. London 1995. Regulation of protein synthesis by heme-regulated eIF-2 alpha kinase. Trends Biochem. Sci. 20: 105–108.
  • Clemens, M. J. 1996. Protein kinaes that phosphorylate eIF2 and eIF2β, and their role in eukaryotic cell translational control Translational control. In: Hershey, J. W. B., M. B. Mathews, and N. Sonenberg139–172Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • de Haro, C., R. Mendez, and J. Santoyo 1996. The eIF-2α kinases and the control of protein synthesis. FASEB J. 10: 1378–1388.
  • Dever, T. E., J. J. Chen, G. N. Barber, A. M. Cigan, L. Feng, T. F. Donahue, I. M. London, M. G. Katze, and A. G. Hinnebusch 1993. Mammalian eukaryotic initiation factor 2 alpha kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast. Proc. Natl. Acad. Sci. USA 90: 4616–4620.
  • Dever, T. E., L. Feng, R. C. Wek, A. M. Cigan, T. F. Donahue, and A. G. Hinnebusch 1992. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68: 585–596.
  • Donze, O., R. Jagus, A. E. Koromilas, J. W. Hershey, and N. Sonenberg 1995. Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells. EMBO J. 14: 3828–3834.
  • Feng, G. S., K. Chong, A. Kumar, and B. R. Williams 1992. Identification of double-stranded RNA-binding domains in the interferon-induced double-stranded RNA-activated p68 kinase. Proc. Natl. Acad. Sci. USA 89: 5447–5451.
  • Feng, L., H. Yoon, and T. F. Donahue 1994. Casein kinase II mediates multiple phosphorylation of Saccharomyces cerevisiae eIF-2α (encoded by SUI2), which is required for optimal function in S. cerevisiae. Mol. Cell. Biol. 14: 5139–5153.
  • Goodison, S., S. Kenna, and S. J. Ashcroft 1992. Control of insulin gene expression by glucose. Biochem. J. 285: 563–568.
  • Grimaldi, K. A., K. Siddle, and J. C. Hutton 1987. Biosynthesis of insulin secretory granule membrane proteins. Control by glucose. Biochem. J. 245: 567–573.
  • Guest, P. C., E. M. Bailyes, N. G. Rutherford, and J. C. Hutton 1991. Insulin secretory granule biogenesis. Co-ordinate regulation of the biosynthesis of the majority of constituent proteins. Biochem. J. 274: 73–78.
  • Guest, P. C., C. J. Rhodes, and J. C. Hutton 1989. Regulation of the biosynthesis of insulin-secretory-granule proteins. Co-ordinate translational control is exerted on some, but not all, granule matrix constituents. Biochem. J. 257: 431–437.
  • Hanks, S. K., and T. Hunter 1995. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9: 576–596.
  • Hinnebusch, A. G. 1994. The eIF-2 alpha kinases: regulators of protein synthesis in starvation and stress. Semin. Cell Biol. 5: 417–426 (Review.)
  • Hinnebusch, A. G. 1997. Translational regulation of yeast GCN4. A window on factors that control initiator-tRNA binding to the ribosome. J. Biol. Chem. 272: 21661–21664.
  • Jeffrey, I. W., S. Kadereit, E. F. Meurs, T. Metzger, M. Bachmann, M. Schwemmle, A. G. Hovanessian, and M. J. Clemens 1995. Nuclear localization of the interferon-inducible protein kinase PKR in human cells and transfected mouse cells. Exp. Cell Res. 218: 17–27.
  • Kaiser, C., S. Michaelis, and A. Mitchell 1994. Methods in yeast genetics 207–217Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Koromilas, A. E., S. Roy, G. N. Barber, M. G. Katze, and N. Sonenberg 1992. Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science 257: 1685–1689.
  • Kozak, M. 1991. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 263: 19867–19870.
  • Lee, S. B., and M. Esteban 1994. The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology 199: 491–496.
  • Lee, S. B., D. Rodriguez, J. R. Rodriguez, and M. Esteban 1997. The apoptosis pathway triggered by the interferon-induced protein kinase PKR requires the third basic domain, initiates upstream of Bcl-2,. and involves ICE-like proteases. Virology 231: 81–88.
  • Mathews, M. B. 1996. Interactions between viruses and the cellular machinery for protein synthesis Translational control. In: Hershey, J. W. B., M. B. Mathews, and N. Sonenberg505–548Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mathews, M. B., N. Sonenberg, and J. W. B. Hershey 1996. Origins and targets of translational control Translational control. In: Hershey, J. W. B., M. B. Mathews, and N. Sonenberg1–30Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Merrick, W. C., and J. W. B. Hershey 1996. The pathway and mechanism of eukaryotic protein synthesis Translational control. In: Hershey, J. W. B., M. B. Mathews, and N. Sonenberg31–70Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Meurs, E. F., J. Galabru, G. N. Barber, M. G. Katze, and A. G. Hovanessian 1993. Tumor suppressor function of the interferon-induced double-stranded RNA-activated protein kinase. Proc. Natl. Acad. Sci. USA 90: 232–236.
  • Mohrle, J. J., Y. Zhao, B. Wernli, R. M. Franklin, and B. Kappes 1997. Molecular cloning, characterization and localization of PfPk4, an eIF-2α kinase-related enzyme from the malarial parasite Plasmodium falciparum. Biochem. J. 328: 677–687.
  • Nielsen, D. A., M. Welsh, M. J. Casadaban, and D. F. Steiner 1985. Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. I. Effects of glucose and cyclic AMP on the transcription of insulin mRNA. J. Biol. Chem. 260: 13585–13589.
  • Olmsted, E. A., L. O’Brien, E. C. Henshaw, and R. Panniers 1993. Purification and characterization of eukaryotic initiation factor (eIF)-2 alpha kinases from Ehrlich ascites tumor cells. J. Biol. Chem. 268: 12552–12559.
  • Olsen, D. S., B. Jordan, D. Chen, R. C. Wek, and D. R. Cavener 1998. Isolation of the gene encoding the Drosophila melanogaster homolog of the Saccharomyces cerevisiae GCN2 eIF-2 alpha kinase. Genetics 149: 1495–1509.
  • Proud, C. G. 1995. PKR: a new name and new roles. Trends Biochem. Sci. 20: 241–246.
  • Proud, C. G. 1992. Protein phosphorylation in translational control. Curr. Top. Cell. Regul. 32: 243–369.
  • Ramirez, M., R. C. Wek, C. R. Vazquez de Aldana, B. M. Jackson, B. Freeman, and A. G. Hinnebusch 1992. Mutations activating the yeast eIF-2α kinase GCN2: isolation of alleles altering the domain related to histidyl-tRNA synthetases. Mol. Cell. Biol. 12: 5801–5815.
  • Romano, P. R., M. T. Garcia-Barrio, X. Zhang, Q. Wang, D. R. Taylor, F. Zhang, C. Herring, M. B. Mathews, J. Qin, and A. G. Hinnebusch 1998. Autophosphorylation in the activation loop is required for full kinase activity in vivo of human and yeast eukaryotic initiation factor 2α kinases PKR and GCN2. Mol. Cell. Biol. 18: 2282–2297.
  • Romano, P. R., S. R. Green, G. N. Barber, M. B. Mathews, and A. G. Hinnebusch 1995. Structural requirements for double-stranded RNA binding, dimerization, and activation of the human eIF-2α kinase DAI in Saccharomyces cerevisiae. Mol. Cell. Biol. 15: 365–378.
  • Samuel, C. E. 1993. The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J. Biol. Chem. 268: 7603–7606 (Review.)
  • Samuel, C. E., G. S. Knutson, M. J. Berry, J. A. Atwater, and S. R. Lasky 1986. Purification of double-stranded RNA-dependent protein kinase from mouse fibroblasts. Methods Enzymol. 119: 499–516.
  • Santoyo, J., J. Alcalde, R. Mendez, D. Pulido, and C. de Haro 1997. Cloning and characterization of a cDNA encoding a protein synthesis initiation factor-2alpha (eIF-2alpha) kinase from Drosophila melanogaster. Homology to yeast GCN2 protein kinase. J. Biol. Chem. 272: 12544–12550.
  • Srivastava, S. P., K. U. Kumar, and R. J. Kaufman 1998. Phosphorylation of eukaryotic initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. J. Biol. Chem. 273: 2416–2423.
  • Taylor, D. R., S. B. Lee, P. R. Romano, D. R. Marshak, A. G. Hinnebusch, M. Esteban, and M. B. Mathews 1996. Autophosphorylation sites participate in the activation of the double-stranded-RNA-activated protein kinase PKR. Mol. Cell. Biol. 16: 6295–6302.
  • Vazquez de Aldana, C. R., T. E. Dever, and A. G. Hinnebusch 1993. Mutations in the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha) that overcome the inhibitory effect of eIF-2 alpha phosphorylation on translation initiation. Proc. Natl. Acad. Sci. USA 90: 7215–7219.
  • Wek, R. C. 1994. eIF-2 kinases: regulators of general and gene-specific translation initiation. Trends Biochem. Sci. 19: 491–496 (Review.)
  • Wek, R. C., B. M. Jackson, and A. G. Hinnebusch 1989. Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc. Natl. Acad. Sci. USA 86: 4579–4583.
  • Wek, R. C., M. Ramirez, B. M. Jackson, and A. G. Hinnebusch 1990. Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression. Mol. Cell. Biol. 10: 2820–2831.
  • Wek, S. A., S. Zhu, and R. C. Wek 1995. The histidyl-tRNA synthetase-related sequence in the eIF-2α protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol. Cell. Biol. 15: 4497–4506.
  • Xu, Z., J. K. Pal, V. Thulasiraman, H. P. Hahn, C. J. J. Chen, and R. L. Matts 1997. The role of the 90-kDa heat-shock protein and its associated cohorts in stabilizing the heme-regulated eIF-2alpha kinase in reticulocyte lysates during heat stress. Eur. J. Biochem. 246: 461–470.
  • Yang, Y.-L., Y. F. L. Reis, J. Pavlovic, A. Aguzzi, R. Schafer, A. Kumar, B. R. G. Williams, M. Aguet, and C. Weissman 1995. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 14: 6095–6106.
  • Zhu, S., P. R. Romano, and R. C. Wek 1997. Ribosome targeting of PKR is mediated by two double-stranded RNA-binding domains and facilitates in vivo phosphorylation of eukaryotic initiation factor-2. J. Biol. Chem. 272: 14434–14441.
  • Zhu, S., A. Y. Sobolev, and R. C. Wek 1996. Histidyl-tRNA synthetase-related sequences in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2. J. Biol. Chem. 271: 24989–24994.
  • Zioncheck, T. F., M. L. Harrison, and R. L. Geahlen 1986. Purification and characterization of a protein-tyrosine kinase from bovine thymus. J. Biol. Chem. 261: 15637–15643.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.