15
Views
74
CrossRef citations to date
0
Altmetric
Gene Expression

AUUUA Sequences Direct mRNA Deadenylation Uncoupled from Decay during Xenopus Early Development

&
Pages 7537-7545 | Received 06 Jul 1998, Accepted 23 Aug 1998, Published online: 28 Mar 2023

REFERENCES

  • Anderson, J. S. J., and R. Parker 1998. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires SK12 DEVH box protein and 3′ to 5′ exonuclease of the exosome complex. EMBO J. 17: 1497–1506.
  • Audic, Y., F. Omilli, and H. B. Osborne 1997. Postfertilization deadenylation of mRNAs in Xenopus laevis embryos is sufficient to cause their degradation at the blastula stage. Mol. Cell. Biol. 17: 209–218.
  • Beelman, C., A. Stevens, G. Caponigro, T. LaGrandeur, L. Hatfield, D. Fortner, and R. Parker 1996. An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382: 642–646.
  • Bernstein, P., S. Peltz, and J. Ross 1989. The poly(A)–poly(A)-binding protein complex is a major determinant of mRNA stability in vitro. Mol. Cell. Biol. 9: 659–670.
  • Bouvet, P., F. Omilli, A.-B. Yannick, V. Legagneux, C. Roghi, T. Bassez, and H. B. Osborne 1994. The deadenylation conferred by the 3′ untranslated region of a developmentally controlled mRNA in Xenopus embryos is switched to polyadenylation by deletion of a short sequence element. Mol. Cell. Biol. 14: 1893–1900.
  • Brewer, G., and J. Ross 1988. Poly(A) shortening and degradation of the 3′ A+U-rich sequences of human c-myc mRNA in a cell-free system. Mol. Cell. Biol. 8: 1697–1708.
  • Caput, D., B. Beutler, K. Hartog, R. Thayer, S. Brown-Shimer, and A. Cerami 1986. Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. USA 83: 1670–1674.
  • Chen, C.-Y., T.-M. Chen, and A.-B. Shyu 1994. Interplay of two functionally and structurally distinct domains of the c-fos AU-rich element specifies its mRNA-destabilizing function. Mol. Cell. Biol. 14: 416–426.
  • Chen, C.-Y., and A.-B. Shyu 1995. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20: 465–470.
  • Chen, C.-Y., and A.-B. Shyu 1994. Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol. Cell. Biol. 14: 8471–8482.
  • Couttet, P., M. Fromont-Racine, D. Steel, R. Pictet, and T. Grange 1997. Messenger RNA deadenylylation precedes decapping in mammalian cells. Proc. Natl. Acad. Sci. USA 94: 5628–5633.
  • Davidson, E. 1986. Gene activity in early development3rd ed. Academic Press, New York, N.Y.
  • Decker, C., and R. Parker 1993. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7: 1632–1643.
  • Drummond, D., J. Armstrong, and A. Colman 1985. The effect of capping and polyadenylation on stability, movement, and translation of synthetic messenger RNAs in Xenopus oocytes. Nucleic Acids Res. 13: 7375–7394.
  • Drummond, D., J. Armstrong, and A. Colman 1985. The effect of capping and polyadenylation on the stability, movement and translation of synthetic messenger RNAs in Xenopus oocytes. Nucleic Acids Res. 13: 7375–7394.
  • Duval, C., P. Bouvet, F. Omilli, C. Roghi, C. Dorel, R. LeGuellec, J. Paris, and H. B. Osborne 1990. Stability of maternal mRNA in Xenopus embryos: role of transcription and translation. Mol. Cell. Biol. 10: 4123–4129.
  • Dworkin, M., and E. Dworkin-Rastl 1985. Changes in RNA titers and polyadenylation during oogenesis and oocyte maturation in Xenopus laevis. Dev. Biol. 112: 451–457.
  • Fan, X. C., and J. A. Steitz 1998. Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 12: 3448–3460.
  • Fox, C., M. Sheets, and M. Wickens 1989. Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev. 3: 2151–2162.
  • Fox, C., and M. Wickens 1990. Poly(A) removal during oocyte maturation: a default reaction selectively prevented by specific sequences in the 3′ UTR of certain maternal mRNAs. Genes Dev. 4: 2287–2298.
  • Galili, G., E. Kawata, L. Smith, and B. Larkins 1988. Role of the 3′-poly(A) sequence in translational regulation of mRNAs in Xenopus laevis oocytes. J. Biol. Chem. 263: 5764–5770.
  • Gautier, J., J. Solomon, R. Booher, J. F. Bazan, and M. Kirschner 1991. cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67: 197–211.
  • Huarte, J., A. Stutz, M. O’Connell, P. Gubler, D. Belin, A. Darrow, S. Strickland, and J.-D. Vassalli 1992. Transient translational silencing by reversible mRNA deadenylation. Cell 69: 1021–1030.
  • Hyman, L., and M. Wormington 1988. Translational inactivation of ribosomal protein mRNAs during Xenopus oocyte maturation. Genes Dev. 2: 598–605.
  • Jones, T., and M. Cole 1987. Rapid cytoplasmic turnover of c-myc mRNA: requirement of the 3′ untranslated sequences. Mol. Cell. Biol. 7: 4513–4521.
  • Kay, B., and H. B. Peng 1991. Methods in cell biology, 36. Xenopus laevis: practical uses in cell and molecular biology. Academic Press, New York, N.Y.
  • Kruys, V., O. Marinx, G. Shaw, J. Deschamps, and G. Huez 1989. Translational blockade imposed by cytokine-derived UA-rich sequences. Science 245: 852–855.
  • Kruys, V., M. Wathelet, P. Poupart, R. Contreras, W. Fiers, J. Content, and G. Huez 1987. The 3′ untranslated region of the human interferon-β-mRNA has an inhibitory effect on translation. Proc. Natl. Acad. Sci. USA 84: 6030–6034.
  • Lagnado, C., C. Brown, and G. Goodall 1994. AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol. Cell. Biol. 14: 7984–7995.
  • LaGrandeur, T., and R. Parker 1998. Isolation and characterization of Dcp1p, the yeast mRNA decapping enzyme. EMBO J. 17: 1487–1496.
  • Legagneux, V., F. Omilli, and H. B. Osborne 1995. Substrate-specific regulation of RNA deadenylation in Xenopus embryo and activated egg extracts. RNA 1: 1001–1008.
  • Levy, N. S., S. Chung, H. Furneaux, and A. P. Levy 1998. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J. Biol. Chem. 273: 6417–6423.
  • Marinx, O., S. Bertrand, E. Karsenti, G. Huez, and V. Kruys 1994. Fertilization of Xenopus eggs imposes a complete translational arrest of mRNAs containing 3′UUAUUUAU elements. FEBS Lett. 345: 107–112.
  • McGrew, L., E. Dworkin-Rastl, M. Dworkin, and J. Richter 1989. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev. 3: 803–915.
  • Muckenthaler, M., N. Gunkel, R. Stripecke, and M. Hentze 1997. Regulated poly(A) tail shortening in somatic cells mediated by cap-proximal translational repressor proteins and ribosome association. RNA 3: 983–995.
  • Muhlrad, D., C. Decker, and R. Parker 1994. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′→3′ digestion of the transcript. Genes Dev. 8: 855–866.
  • Muhlrad, D., C. Decker, and R. Parker 1995. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell Biol. 15: 2145–2156.
  • Murray, A., and M. Kirschner 1989. Cycline synthesis drives the early embryonic cell cycle. Nature 339: 275–280.
  • Paillard, L., F. Omilli, V. Legagneux, T. Bassez, D. Manley, and H. B. Osborne 1998. EDEN and EDEN-BP, a cis element and an associated factor that mediate sequence-specific mRNA deadenylation in Xenopus embryos. EMBO J. 17: 278–287.
  • Peng, S. S.-Y., C.-Y. A. Chen, N. Xu, and A.-B. Shyu 1998. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 17: 3461–3470.
  • Richter, J. 1991. Translational control in early development. Bioessays 13: 179–183.
  • Rosenthal, E. T., T. R. Tansey, and J. V. Ruderman 1983. Sequence-specific adenylations and deadenylations accompany changes in the translation of maternal messenger RNA after fertilization of Spisula oocytes. J. Mol. Biol. 166: 309–327.
  • Shaw, G., and R. Kamen 1986. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659–667.
  • Shyu, A.-B., J. Belasco, and M. Greenberg 1991. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 5: 221–231.
  • Standart, N., and R. Jackson 1990. Do the poly(A) tail and 3′ untranslated region control mRNA translation? Cell 62: 15–24.
  • Stolle, C., M. Payne, and E. Benz 1987. Equal stabilities of normal β-globin and nontranslatable β-39 thalassemic transcripts in cell-free extracts. Blood 70: 293–300.
  • Tchang, F., S. Vriz, and M. Mechali 1991. Postranscriptional regulation of c-myc RNA during early development of Xenopus laevis. FEBS Lett. 291: 177–180.
  • Varnum, S., and M. Wormington 1990. Deadenylation of maternal mRNAs during Xenopus oocyte maturation does not require specific cis-sequences: a default mechanism for translational control. Genes Dev. 4: 2278–2286.
  • Veyrune, J., G. Campbell, J. Wiseman, J. Blanchard, and J. Hesketh 1996. A localisation signal in the 3′ untranslated region of c-myc mRNA targets c-myc mRNA and β-globin reporter sequences to the perinuclear cytoplasm and cytoskeletal-bound polysomes. J. Cell Sci. 109: 1185–1194.
  • Vriz, S., and M. Mechali 1989. Analysis of 3′-untranslated regions of seven c-myc genes reveals conserved elements prevalent in post-transcriptionally regulated genes. FEBS Lett. 251: 201–206.
  • Vriz, S., M. Taylor, and M. Mechali 1989. Differential expression of two Xenopus c-myc proto-oncogenes during development. EMBO J. 8: 4091–4097.
  • Wickens, M. 1990. How the messenger got its tail: addition of poly(A) in the nuclues. Trends Biochem. Sci. 15: 277–281.
  • Wickens, M. 1990. In the beginning is the end: regulation of poly(A) addition and removal during early development. Trends Biochem. Sci. 15: 320–324.
  • Wilson, T., and R. Treisman 1988. Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3′ AU-rich sequences. Nature 336: 396–399.
  • Wu, L., P. Good, and J. D. Richter 1997. The 36-kilodalton embryonic-type cytoplasmic polyadenylation element-binding protein in Xenopus laevis is ElrA, a member of the ELAV family of RNA-binding proteins. Mol. Cell. Biol. 17: 6402–6409.
  • Zubiaga, A., J. Belasco, and M. Greenberg 1995. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol. Cell. Biol. 15: 2219–2230.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.