15
Views
71
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

RMP, a Novel RNA Polymerase II Subunit 5-Interacting Protein, Counteracts Transactivation by Hepatitis B Virus X Protein

, , , , , & show all
Pages 7546-7555 | Received 11 May 1998, Accepted 02 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Acker, J., D. M. Graaf, I. Cheynel, V. Khazak, C. Kedinger, and M. Vigneron 1997. Interactions between the human RNA polymerase II subunits. J. Biol. Chem. 272: 16815–16821.
  • Alland, L., R. Muhle, Hou H., Jr., J. Potes, L. Chin, N. S. Agus, and R. A. DePinho 1997. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387: 49–55.
  • Antunovic, J., N. Lemieux, and J. A. Cromlish 1993. The 17 kDa HBx protein encoded by hepatitis B virus interacts with the activation domains of Oct-1, and functions as a coactivator in the activation and repression of a human U6 promoter. Cell. Mol. Biol. Res. 39: 463–482.
  • Archambault, J., and J. D. Friesen 1993. Genetics of eukaryotic RNA polymerases I, II, and III. Microbiol. Rev. 57: 703–724.
  • Aufiero, B., and R. J. Schneider 1990. The hepatitis B virus X-gene product transactivates both RNA polymerase II and III promoters. EMBO J. 9: 497–504.
  • Awrey, D. E., R. G. Weilbaecher, S. A. Hemming, S. M. Orlicky, C. M. Kane, and A. M. Edwards 1997. Transcriptional elongation through DNA arrest sites: a multistep process involving both RNA polymerase II subunit RPB9 and TFIIS. J. Biol. Chem. 272: 14747–14754.
  • Benn, J., and R. J. Schneider 1994. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc. Natl. Acad. Sci. USA 91: 10350–10354.
  • Bertolotti, A., Y. Lutz, D. J. Heard, P. Chambon, and L. Tora 1996. hTAF68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS, is associated with both TFIID and RNA polymerase II. EMBO J. 15: 5022–5031.
  • Bertolotti, A., T. Melot, J. Acker, M. Vigneron, O. Delattre, and L. Tora 1998. EWS, but not EWS-FLI-1, is associated with both TFIID and RNA polymerase II: interactions between two members of the TET family, EWS and hTAFII68, and subunits of TFIID and RNA polymerase II complexes. Mol. Cell. Biol. 18: 1489–1497.
  • Chao, D. M., E. L. Gadbois, P. J. Murray, S. F. Anderson, M. S. Sonu, J. D. Parvin, and R. A. Young 1996. A mammalian SRB protein associated with an RNA polymerase II holoenzyme. Nature 380: 82–85.
  • Chen, H.-S., S. Kaneko, R. Girones, R. W. Anderson, W. E. Hornbuckle, B. C. Tennant, P. J. Cote, J. L. Gerin, R. H. Purcell, and R. H. Miller 1993. The woodchuck hepatitis virus X gene is important for establishment of virus infection in woodchucks. J. Virol. 67: 1218–1226.
  • Chen, J. D., and R. M. Evans 1995. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377: 454–457.
  • Cheong, J. H., M. Yi, Y. Lin, and S. Murakami 1995. Human RPB5, a subunit shared by eukaryotic nuclear RNA polymerases, binds human hepatitis B virus X protein and may play a role in X transactivation. EMBO J. 14: 143–150.
  • Conaway, R. C., and J. W. Conaway 1993. General initiation factors for RNA polymerase II. Annu. Rev. Biochem. 62: 161–190.
  • Cross, J. C., P. Wen, and J. W. Rutter 1993. Transactivation by hepatitis B virus X protein is promiscuous and dependent on mitogen-activated cellular serine/threonine kinase. Proc. Natl. Acad. Sci. USA 90: 8078–8082.
  • Doria, M., N. Klein, R. Lucito, and R. J. Schneider 1995. The hepatitis B virus HBx protein is a dual specificity cytoplasmic activator of Ras and a nuclear activator of transcription factors. EMBO J. 14: 4747–4757.
  • Feitelson, M. A., M. Zhu, L. X. Duan, and W. T. London 1993. Hepatitis B x antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene 8: 1109–1117.
  • Ge, H., and R. G. Roeder 1994. Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class II genes. Cell 78: 513–523.
  • Goodrich, J. A., T. Hoey, C. J. Thut, A. Admon, and R. Tjian 1993. Drosophila TAFII40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 75: 519–530.
  • Gu, W., X. L. Shi, and R. G. Roeder 1997. Synergistic activation of transcription by CBP and p53. Nature 387: 819–823.
  • Haviv, I., M. Shamay, G. Doitsh, and Y. Shaul 1998. Hepatitis B virus pX targets TFIIB in transcription coactivation. Mol. Cell. Biol. 18: 1562–1569.
  • Haviv, I., D. Vaizel, and Y. Shaul 1996. pX, the HBV-encoded coactivator, interacts with components of the transcription machinery and stimulates transcription in a TAF-independent manner. EMBO J. 15: 3413–3420.
  • Haviv, I., D. Vaizel, and Y. Shaul 1995. The X protein of hepatitis B virus coactivates potent activation domains. Mol. Cell. Biol. 15: 1079–1085.
  • Inostroza, J. M., F. H. Mermelstein, I. Ha, W. S. Lane, and D. Reinberg 1992. Dr1, a TATA-binding protein associated phosphoprotein and inhibitor of class II gene transcription. Cell 70: 477–489.
  • Kamei, Y., L. Xu, T. Heinzel, J. Torchia, R. Kurokawa, B. Gloss, S. C. Lin, R. A. Heyman, D. W. Rose, C. K. Glass, and M. G. Rosenfeld 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85: 403–414.
  • Kim, C. M., K. Koike, I. Saito, T. Miyamura, and G. Jay 1991. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351: 317–320.
  • Kim, T. K., T. Lagrange, Y. H. Wang, J. D. Griffith, D. Reinberg, and R. H. Ebright 1997. Trajectory of DNA in the RNA polymerase II transcription preinitiation complex. Proc. Natl. Acad. Sci. USA 94: 12268–12273.
  • Kim, Y.-J., S. Bjorklund, S. Li, M. H. Sayer, and R. D. Kornberg 1994. A multiprotein complex mediator of transcriptional activation and its interaction with C-terminal domain of RNA polymerase II. Cell 77: 599–608.
  • Kimura, M., A. Ishiguro, and A. Ishihama 1997. RNA polymerase II subunits 2, 3, and 11 form a core subassembly with DNA binding activity. J. Biol. Chem. 272: 25851–25855.
  • Koleske, A. J., and R. A. Young 1994. An RNA polymerase II holoenzyme responsive to activators. Nature 368: 466–469.
  • Kwok, R. P., J. R. Lundblad, J. C. Chrivia, J. P. Richards, H. P. Bachinger, R. G. Brennan, S. G. Roberts, M. R. Green, and R. H. Goodman 1994. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370: 223–226.
  • Lalo, D., C. Carles, A. Sentenac, and P. Thuriaux 1993. Interactions between three common subunits of yeast RNA polymerases I and III. Proc. Natl. Acad. Sci. USA 90: 5524–5528.
  • La-Spada, A. R., H. L. Paulson, and K. H. Fischbeck 1994. Trinucleotide repeat expansion in neurological disease. Ann. Neurol. 36: 814–822.
  • Lill, N. L., S. R. Grossman, D. Ginberg, J. DeCaprio, and D. M. Livingston 1997. Binding and modulation of p53 by p300/CBP coactivators. Nature 387: 823–827.
  • Lin, Y., T. Nomura, J. H. Cheong, D. Dorjsuren, K. Iida, and S. Murakami 1997. Hepatitis B virus X protein is a transcriptional modulator that communicates with transcriptional factor IIB and RNA polymerase II subunit 5. J. Biol. Chem. 272: 7132–7139.
  • Lin, Y., T. Nomura, T. Yamashita, D. Dorjsuren, H. Tang, and S. Murakami 1997. The transactivation and p53-interacting functions of hepatitis B virus X protein are mutually interfering but distinct. Cancer Res. 57: 5137–5142.
  • Lin, Y., H. Tang, T. Nomura, D. Dorjsuren, N. Hayashi, W. Wei, T. Ohta, R. Roeder, and S. Murakami 1998. The hepatitis B virus X protein is a co-activator of activated transcription that modulates the transcription machinery and distal binding activators. J. Biol. Chem. 273: 27097–27103.
  • Lucito, R., and R. J. Schneider 1992. Hepatitis B virus X protein activates transcription factor NF-κB without a requirement for protein kinase C. J. Virol. 66: 983–991.
  • Mahe, Y., N. Mukaida, K. Kuno, M. Akiyama, N. Ikeda, K. Matsushima, and S. Murakami 1991. Hepatitis B virus X protein transactivates human interleukin-8 gene through acting on nuclear factor kB and CCAAT/enhancer-binding protein-like cis-elements. J. Biol. Chem. 266: 13759–13763.
  • Maldonaldo, E., R. Siekhatter, M. Shelton, H. Cho, R. Drapkin, P. Rickert, E. Lees, C. W. Anderson, S. Linn, and D. Reinberg 1996. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381: 86–89.
  • McKune, K., P. A. Moore, M. W. Hull, and N. A. Woychik 1995. Six human RNA polymerase subunits functionally substitute for their yeast counterparts. Mol. Cell. Biol. 15: 6895–6900.
  • McKune, K., and N. A. Woychik 1994. Functional substitution of an essential yeast RNA polymerase subunit by a highly conserved mammalian counterpart. Mol. Cell. Biol. 14: 4155–4159.
  • Meisterernst, M., and R. G. Roeder 1991. Family of proteins that interacts with TFIID and regulates promoter activity. Cell 67: 557–567.
  • Miyao, T., K. Yasui, H. Sakurai, M. Yamaguchi, and A. Ishihama 1996. Molecular assembly of RNA polymerase II from fission yeast Schizosaccharomyces pombe: subunit-subunit contact network involving RPB5. Genes Cells 1: 843–854.
  • Murakami, S., J. Cheong, and S. Kaneko 1994. Human hepatitis B virus X gene encodes a regulatory domain that represses transactivation of X protein. J. Biol. Chem. 269: 15118–15123.
  • Murakami, S., J. Cheong, S. Ohno, K. Matsushima, and S. Kaneko 1994. Transactivation of human hepatitis B virus X protein, HBx, operates through a mechanism distinct from protein kinase C and okadaic acid activation pathways. Virology 199: 243–246.
  • Orphanides, G., T. Lagrange, and D. Reinberg 1996. The general transcription factors of RNA polymerase II. Genes Dev. 10: 2657–2683.
  • Ossipow, V., J. P. Tassan, E. A. Nigg, and U. Schibler 1995. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83: 137–146.
  • Sentenac, A. 1985. Eukaryotic RNA polymerases. Crit. Rev. Biochem. 18: 31–91.
  • Struhl, K. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12: 599–606.
  • Su, F., and R. J. Schneider 1996. Hepatitis B virus HBx protein activates transcription factor NF-κB by acting on multiple cytoplasmic inhibitors of rel-related proteins. J. Virol. 70: 4558–4566.
  • Terradillos, O., O. Billet, C. A. Renard, R. Levy, T. Molina, P. Briand, and M. A. Buendia 1997. The hepatitis B virus X gene potentiates c-myc induced liver oncogenesis in transgenic mice. Oncogene 14: 395–404.
  • Voegel, J. J., M. J. S. Heine, C. Zechel, P. Chambon, and H. Gronemeyer 1996. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15: 3667–3675.
  • Wada, T., T. Takagi, Y. Yamaguchi, A. Ferdous, T. Imai, S. Hirose, S. Sugimoto, K. Yano, G. A. Hartzog, F. Winston, S. Buratowski, and H. Handa 1998. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12: 343–356.
  • Wilson, C. J., D. M. Chao, A. N. Imbalzano, G. R. Schnitzler, R. E. Kingston, and R. Young 1996. RNA polymerase holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84: 235–244.
  • Woychik, N. A., S. M. Liao, P. A. Kolodziej, and R. A. Young 1990. Subunits shared by eukaryotic nuclear RNA polymerases. Genes Dev. 4: 313–323.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.