5
Views
70
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Saccharomyces cerevisiae Msh2p and Msh6p ATPase Activities Are Both Required during Mismatch Repair

, &
Pages 7590-7601 | Received 29 Apr 1998, Accepted 09 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Acharya, S., T. Wilson, S. Gradia, M. F. Kane, S. Guerrette, G. T. Marsischky, R. Kolodner, and R. Fishel 1996. hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc. Natl. Acad. Sci. USA 93: 13629–13634.
  • Alani, E. 1996. The Saccharomyces cerevisiae Msh2p and Msh6p form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Mol. Cell. Biol. 16: 5604–5615.
  • Alani, E., N. W. Chi, and R. D. Kolodner 1995. The Saccharomyces cerevisiae Msh2 protein specifically binds to duplex oligonucleotides containing mismatched DNA base pairs and loop insertions. Genes Dev. 9: 234–247.
  • Alani, E., R. A. G. Reenan, and R. D. Kolodner 1994. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 137: 19–39.
  • Alani, E., T. Sokolsky, B. Studamire, J. J. Miret, and R. S. Lahue 1997. Genetic and biochemical analysis of Msh2p-Msh6p: role of ATP hydrolysis and Msh2p-Msh6p subunit interactions in mismatch base pair recognition. Mol. Cell. Biol. 17: 2436–2447.
  • Allen, D. J., A. Makhov, M. Grilley, J. Taylor, R. Thresher, P. Modrich, and J. D. Griffith 1997. MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J. 16: 4467–4476.
  • Au, K. G., K. Welsh, and P. Modrich 1992. Initiation of methyl-directed mismatch repair. J. Biol. Chem. 267: 12142–12148.
  • Bhattacharyya, G. K., and R. A. Johnson 1977. Statistical concepts and methods. John Wiley & Sons, New York, N.Y.
  • Biswas, I., and P. Hsieh 1996. Identification and characterization of a thermostable MutS homolog from Thermus aquaticus. J. Biol. Chem. 271: 5040–5048.
  • Bjornson, K. P., I. Wong, and T. M. Lohman 1996. ATP hydrolysis stimulates binding and release of single stranded DNA from alternating subunits of the dimeric E. coli Rep helicase: implications for ATP-driven helicase translocation. J. Mol. Biol. 263: 411–422.
  • Bjornson, K. P., J. Hsieh, M. Amaratunga, and T. M. Lohman 1998. Kinetic mechanism for the sequential binding of two single-stranded oligodeoxynucleotides to the Escherichia coli Rep helicase dimer. Biochemistry 37: 891–899.
  • Bowers, J., and E. Alani. Unpublished data.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
  • Chi, N., and R. D. Kolodner 1994. The effect of DNA mismatches on the ATPase activity of Msh1, a protein in yeast mitochondria that recognizes DNA mismatches. J. Biol. Chem. 269: 29993–29997.
  • Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and P. Hieter 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110: 119–122.
  • Crouse, G. F. 1996. Mismatch repair systems in Saccharomyces cerevisiae DNA damage and repair—biochemistry, genetics and cell biology. In: Nickoloff, J., and M. Hoekstra411–448Humana Press, Clifton, N.J.
  • Drotschmann, K., A. Aronshtam, H. J. Fritz, and M. G. Marinus 1998. The E. coli MutL protein stimulates binding of VSR and MutS to heteroduplex DNA. Nucleic Acids Res. 26: 948–953.
  • Drummond, J. T., G.-M. Li, M. J. Longley, and P. Modrich 1995. Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells. Science 268: 1909–1912.
  • Geitz, R. D., and R. H. Schiestl 1991. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7: 253–263.
  • Gradia, S., S. Acharya, and R. Fishel 1997. The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch. Cell 91: 995–1005.
  • Grilley, M., K. M. Welsh, S.-S. Su, and P. Modrich 1989. Isolation and characterization of the Escherichia coli mutL gene product. J. Biol. Chem. 264: 1000–1004.
  • Gu, L., Y. Hong, S. McCulloch, H. Watanabe, and G. M. Li 1998. ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucleic Acids Res. 26: 1173–1178.
  • Haber, L. T., and G. C. Walker 1991. Altering the conserved nucleotide binding motif in the Salmonella typhimurium MutS mismatch repair protein affects both its ATPase and mismatch binding activities. EMBO J. 10: 2707–2715.
  • Habraken, Y., P. Sung, L. Prakash, and S. Prakash 1996. Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. Curr. Biol. 6: 1185–1187.
  • Habraken, Y., P. Sung, L. Prakash, and S. Prakash 1997. Enhancement of MSH2-MSH3-mediated mismatch recognition by the yeast MLH1-PMS1 complex. Curr. Biol. 7: 790–793.
  • Habraken, Y., P. Sung, L. Prakash, and S. Prakash 1998. ATP-dependent assembly of a ternary complex consisting of a DNA mismatch and the yeast MSH2-MSH6 and MLH1-PMS1 protein complexes. J. Biol. Chem. 273: 9837–9841.
  • Harlow, E., and D. Lane 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Henderson, S. T., and T. D. Petes 1992. Instability of simple sequence DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 2749–2757.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 51–59.
  • Hughes, M. J., and J. Jiricny 1992. The purification of a human mismatch-binding protein and identification of its associated ATPase and helicase activities. J. Biol. Chem. 267: 23876–23882.
  • Iaccarino, I., G. Marra, F. Palombo, and J. Jiricny 1998. hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSα. EMBO J. 17: 2677–2686.
  • Iaccarino, I., F. Palombo, J. Drummond, N. F. Totty, J. J. Hsuan, P. Modrich, and J. Jiricny 1996. MSH6, a Saccharomyces cerevisiae protein that binds to mismatches as a heterodimer with MSH2. Curr. Biol. 6: 484–486.
  • Jiricny, J., S. Su, S. G. Wood, and P. Modrich 1988. Mismatch-containing oligonucleotide duplexes bound by the E. coli mutS-encoded protein. Nucleic Acids Res. 16: 7843–7853.
  • Johnson, R. E., G. K. Kovvali, L. Prakash, and S. Prakash 1996. Requirement of the yeast MSH3 and MSH6 genes for MSH2 dependent genomic stability. J. Biol. Chem. 271: 7285–7288.
  • Kolodner, R. 1996. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 10: 1433–1442.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
  • Lahue, R. S., K. G. Au, and P. Modrich 1989. DNA mismatch correction in a defined system. Science 245: 160–164.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Marsischky, G. T., N. Filosi, M. F. Kane, and R. Kolodner 1996. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2 -dependent mismatch repair. Genes Dev. 10: 407–420.
  • McEntee, K., G. Weinstock, and I. R. Lehman 1980. recA protein-catalyzed strand assimilation: stimulation by Escherichia coli single-stranded DNA-binding protein. Proc. Natl. Acad. Sci. USA 77: 857–861.
  • Miller, J. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Modrich, P. 1997. Strand-specific mismatch repair in mammalian cells. J. Biol. Chem. 272: 24727–24730.
  • Modrich, P., and R. S. Lahue 1996. Mismatch repair in replication fidelity, genetic recombination and cancer biology. Annu. Rev. Biochem. 65: 101–133.
  • Palombo, F., P. Gallinari, I. Iaccarino, T. Lettieri, M. Hughes, A. D’Arrigo, O. Truong, J. J. Hsuan, and J. Jiricny 1995. GTBP, a 160 kD protein essential for mismatch binding activity in human cells. Science 268: 1912–1914.
  • Palombo, F., I. Iaccarino, E. Nakajima, M. Ikejima, T. Shimada, and J. Jiricny 1996. hMutSβ, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr. Biol. 6: 1181–1184.
  • Parker, B. O., and M. G. Marinus 1992. Repair of DNA heteroduplexes containing small heterologous sequences in Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 1730–1734.
  • Prolla, T. A., D. M. Christie, and R. M. Liskay 1994. Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene. Mol. Cell. Biol. 14: 407–415.
  • Prolla, T. A., Q. Pang, E. Alani, R. D. Kolodner, and R. M. Liskay 1994. MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast. Science 265: 1091–1093.
  • Reenan, R. A. G., and R. D. Kolodner 1992. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics 132: 975–985.
  • Rose, M. D., F. Winston, and P. Hieter 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sancar, A., and J. E. Hearst 1993. Molecular matchmakers. Science 259: 1415–1420.
  • Segel, I. H. 1976. Biochemical calculations. John Wiley & Sons, New York, N.Y.
  • Sokolsky, T., and E. Alani. Unpublished data.
  • Strand, M., M. C. Earley, G. F. Crouse, and T. D. Petes 1995. Mutations in the MSH3 gene preferentially lead to deletions within tracts of simple repetitive DNA in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 92: 10418–10421.
  • Studamire, B., and E. Alani. Unpublished data.
  • Su, S.-S., R. S. Lahue, K. G. Au, and P. Modrich 1988. Mispair specificity of methyl-directed DNA mismatch correction in vitro. J. Biol. Chem. 263: 6829–6835.
  • Su, S.-S., and P. Modrich 1986. Escherichia coli mutS-encoded protein binds to mismatched DNA base pairs. Proc. Natl. Acad. Sci. USA 83: 5057–5061.
  • Sung, P., D. Higgins, L. Prakash, and S. Prakash 1988. Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. EMBO J. 7: 3263–3269.
  • Tipton, K. F. 1992. Principles of enzyme assay and kinetic studies Enzyme assays: a practical approach. In: Eisenthal, R., and M. J. Danson1–58Oxford University Press, Oxford, England.
  • Welsh, K. M., A.-L. Lu, S. Clark, and P. Modrich 1987. Isolation and characterization of the Escherichia coli mutH gene product. J. Biol. Chem. 262: 15624–15629.
  • Winston, F., C. Dollard, and S. L. Ricupero-Hovasse 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11: 53–55.
  • Wu, T.-H., and M. G. Marinus 1994. Dominant negative mutator mutations in the mutS gene of Escherichia coli. J. Bacteriol. 176: 5393–5400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.