22
Views
59
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

SWI-SNF Complex Participation in Transcriptional Activation at a Step Subsequent to Activator Binding

, &
Pages 1774-1782 | Received 12 Sep 1997, Accepted 06 Jan 1998, Published online: 27 Mar 2023

REFERENCES

  • Alani, E., L. Cao, and N. Kleckner 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116: 541–545.
  • Arndt, K. M., S. Ricupero-Hovasse, and F. Winston 1995. TBP mutants defective in activated transcription in vivo. EMBO J. 14: 1490–1497.
  • Bajwa, W., T. E. Torchia, and J. E. Hopper 1988. Yeast regulatory gene GAL3: carbon regulation; UASGAL elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases. Mol. Cell. Biol. 8: 3439–3447.
  • Barberis, A. J., J. Pearlberg, N. Simkovich, S. Farrell, P. Reinagel, C. Bamdad, G. Sigal, and M. Ptashne 1995. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81: 359–368.
  • Brown, S. A., A. N. Imbalzano, and R. E. Kingston 1996. Activator-dependent regulation of transcriptional pausing on nucleosomal templates. Genes Dev. 10: 1479–1490.
  • Bunker, C. A., and R. E. Kingston 1996. Activation domain-mediated enhancement of activator binding to chromatin in mammalian cells. Proc. Natl. Acad. Sci. USA 93: 10820–10825.
  • Burns, L. G., and C. L. Peterson 1997. The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo. Mol. Cell. Biol. 17: 4811–4819.
  • Cairns, B. R., Y. J. Kim, M. H. Sayre, B. C. Laurent, and R. D. Kornberg 1994. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc. Natl. Acad. Sci. USA 91: 1950–1954.
  • Cairns, B. R., Y. Lorch, Y. Li, M. Zhang, L. Lacomis, H. Erdjument-Bromage, P. Tempst, J. Du, B. Laurent, and R. D. Kornberg 1996. RSC, an essential, abundant chromatin-remodeling complex. Cell 87: 1249–1260.
  • Cavalli, G., and F. Thoma 1993. Chromatin transitions during activation and repression of galactose-regulated genes in yeast. EMBO J. 12: 4603–4613.
  • Cavalli, G., D. Bachmann, and F. Thoma 1996. Inactivation of topoisomerases affects transcription-dependent chromatin transitions in rDNA but not in a gene transcribed by RNA polymerase II. EMBO J. 15: 590–597.
  • Chen, H., B. Li, and J. L. Workman 1994. A histone-binding protein, nucleoplasmin, stimulates transcription factor binding to nucleosomes and factor-induced nucleosome disassembly. EMBO J. 13: 380–390.
  • Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and P. Hieter 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110: 119–122.
  • Coté, J., J. Quinn, J. L. Workman, and C. L. Peterson 1994. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265: 53–60.
  • Farrell, S., N. Simkovich, Y. Wu, A. Barberis, and M. Ptashne 1996. Gene activation by recruitment of the RNA polymerase II holoenzyme. Genes Dev. 10: 2359–2367.
  • Fedor, M. J., and R. D. Kornberg 1989. Upstream activation sequence-dependent alteration of chromatin structure and transcription activation of the yeast GAL1-GAL10 genes. Mol. Cell. Biol. 9: 1721–1732.
  • Fitzpatrick, V. D., and C. J. Ingles 1989. The Drosophila fushi tarazu polypeptide is a DNA-binding transcriptional activator in yeast cells. Nature 337: 666–668.
  • Gaudreau, L., A. Schmid, D. Blaschke, M. Ptashne, and W. Hörz 1997. RNA polymerase II holoenzyme recruitment is sufficient to remodel chromatin at the yeast PHO5 promoter. Cell 89: 55–62.
  • Gavin, I. M., and R. T. Simpson 1997. Interplay of yeast global transcriptional regulators Ssn6p-Tup1p and Swi-Snf and their effect on chromatin structure. EMBO J. 16: 6263–6271.
  • Germond, J. E., B. Hirt, P. Oudet, M. Gross-Bellard, and P. Chambon 1975. Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc. Natl. Acad. Sci. USA 72: 1843–1847.
  • Godde, J. S., Y. Nakatani, and A. P. Wolffe 1995. The amino-terminal tails of the core histones and the translational position of the TATA box determine TBP-TFIIA association with nucleosomal DNA. Nucleic Acids Res. 23: 4557–4564.
  • Grant, P. A., L. Duggan, J. Coté, S. M. Roberts, J. E. Brownell, R. Candau, R. Ohba, T. Owen-Hughes, C. D. Allis, F. Winston, S. L. Berger, and J. L. Workman 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11: 1640–1650.
  • Griggs, D. W., and M. Johnston 1991. Regulated expression of the GAL4 gene in yeast provides a sensitive genetic switch for glucose repression. Proc. Natl. Acad. Sci. USA 88: 8597–8601.
  • Guarante, L., and M. Ptashne 1981. Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78: 2199–2203.
  • Hill, J., K. A. Ian, G. Donald, and D. E. Griffiths 1991. DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res. 19: 5791.
  • Hirschhorn, J. N., S. A. Brown, C. D. Clark, and F. Winston 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6: 2288–2298.
  • Imbalzano, A. N., H. Kwon, M. R. Green, and R. E. Kingston 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370: 481–485.
  • Ito, H., Y. Fukuda, K. Marata, and A. Kimura 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.
  • Ito, T., M. Bulger, M. J. Pazin, R. Kobayashi, and J. T. Kadonaga 1997. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90: 145–155.
  • Johnston, M., and R. W. Davis 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 1440–1448.
  • Johnston, S. A., and J. E. Hopper 1982. Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc. Natl. Acad. Sci. USA 79: 6971–6975.
  • Johnston, S. A., Salmeron, J. M.Jr., and S. S. Dincher 1987. Interaction of positive and negative regulatory proteins in the galactose regulon of yeast. Cell 50: 143–146.
  • Kent, N. A., L. E. Bird, and J. Mellor 1993. Chromatin analysis in yeast using NP-40 permeabilized spheroplasts. Nucleic Acids Res. 21: 4653–4654.
  • Kew, O. M., and H. C. Douglas 1976. Genetic coregulation of galactose and melibiose utilization in Saccharomyces. J. Bacteriol. 125: 33–41.
  • Khavari, P. A., C. L. Peterson, J. W. Tamkun, D. B. Mendel, and G. R. Crabtree 1993. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366: 170–174.
  • Kingston, R. E., C. A. Bunker, and A. N. Imbalzano 1996. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 10: 905–920.
  • Kladde, M. P., and R. T. Simpson 1994. Positioned nucleosomes inhibit Dam methylation in vivo. Proc. Natl. Acad. Sci. USA 91: 1361–1365.
  • Knezetic, J. A., and D. S. Luse 1986. The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell 45: 95–104.
  • Kruger, W., C. L. Peterson, A. Sil, C. Coburn, G. Arents, E. N. Moudrianakis, and I. Herskowitz 1995. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 9: 2770–2779.
  • Kwon, H., A. N. Imbalzano, P. A. Khavari, R. E. Kingston, and M. R. Green 1994. Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature 370: 477–481.
  • Laughon, A., and R. F. Gesteland 1984. Primary structure of the Saccharomyces cerevisiae GAL4 gene. Mol. Cell. Biol. 4: 260–267.
  • Laurent, B. C., M. A. Treitel, and M. Carlson 1991. Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Proc. Natl. Acad. Sci. USA 88: 2687–2691.
  • Laurent, B. C., and M. Carlson 1992. Yeast SNF2/SWI2, SNF5, and SNF6 proteins function coordinately with the gene-specific transcriptional activators GAL4 and bicoid. Genes Dev. 6: 1707–1715.
  • Laurent, B. C., I. Treich, and M. Carlson 1993. The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation. Genes Dev. 7: 583–591.
  • Laybourn, P. J., and J. T. Kadonaga 1991. Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254: 238–245.
  • Li, W.-Z., and F. Sherman 1991. Two types of TATA elements for the CYC1 gene of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 666–676.
  • Lohr, D. 1984. Organization of the GAL1-GAL10 intergenic control region chromatin. Nucleic Acids Res. 12: 8457–8474.
  • Lohr, D., and J. Lopez 1995. GAL4/GAL80-dependent nucleosome disruption/deposition on the upstream regions of the yeast GAL1-10 and GAL80 genes. J. Biol. Chem. 270: 27671–27678.
  • Louvion, J.-F., B. Havaux-Copf, and D. Picard 1993. Fusion of GAL4-VP16 to a steroid binding domain provides a tool for gratuitous induction of galactose-responsive genes in yeast. Gene 131: 129–134.
  • Lukacs, E. 1972. Probability and mathematical statistics: an introduction. Academic Press, Ltd., London, United Kingdom.
  • Ma, J., and M. Ptashne 1987. The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50: 137–142.
  • Matsui, T. 1987. Transcription of adenovirus 2 major late and peptide IX genes under conditions of in vitro nucleosome assembly. Mol. Cell. Biol. 7: 1401–1408.
  • Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Morse, R. H. 1989. Nucleosomes inhibit both transcriptional initiation and elongation by RNA polymerase III in vitro. EMBO J. 8: 2343–2351.
  • Morse, R. H. 1991. Topoisomer heterogeneity of plasmid chromatin in living cells. J. Mol. Biol. 222: 133–137.
  • Morse, R. H. 1993. Nucleosome disruption by transcription factor binding in yeast. Science 262: 1563–1566.
  • Nedospasov, S. A., and G. P. Georgiev 1980. Non-random cleavage of SV40 DNA in the compact minichromosome and free in solution by micrococcal nuclease. Biochem. Biophys. Res. Commun. 92: 532–539.
  • Nehlin, J. O., M. Carlberg, and H. Ronne 1991. Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J. 10: 3373–3377.
  • Neigeborn, L., and M. Carlson 1984. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108: 845–858.
  • Owen-Hughes, T., and J. L. Workman 1994. Experimental analysis of chromatin function in transcriptional control. Crit. Rev. Eukaryotic Gene Expression 4: 403–441.
  • Pazin, M. J., and J. T. Kadonaga 1997. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interaction? Cell 88: 737–740.
  • Peterson, C. L., A. Dingwall, Scott 1994. Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc. Natl. Acad. Sci. USA 91: 2905–2908.
  • Peterson, C. L., and I. Herskowitz 1992. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68: 573–583.
  • Prelich, G., and F. Winston 1993. Mutations that suppress the deletion of an upstream activating sequence in yeast: involvement of a protein kinase and histone H3 in repressing transcription in vivo. Genetics 135: 665–676.
  • Rose, M. D., F. Winston, and P. Hieter 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Roth, S. Y., A. Dean, and R. T. Simpson 1990. Yeast α2 repressor positions nucleosomes in TRP1/ARS1 chromatin. Mol. Cell. Biol. 10: 2247–2260.
  • Shimizu, M., S. Y. Roth, C. Szent-Gyorgyi, and R. T. Simpson 1991. Nucleosomes are positioned with base pair precision adjacent to the α2 operator in Saccharomyces cerevisiae. EMBO J. 10: 3033–3041.
  • Sikorski, R. S., and P. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • Simpson, R. T., F. Thoma, and J. M. Brubaker 1985. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42: 799–808.
  • Stafford, G. A., and R. H. Morse 1997. Chromatin remodeling by transcriptional activation domains in a yeast episome. J. Biol. Chem. 272: 11526–11534.
  • Svaren, J., J. Schmitz, and W. Hörz 1994. The transactivation domain of Pho4 is required for nucleosome disruption at the PHO5 promoter. EMBO J. 13: 4856–4862.
  • Tanaka, M. 1996. Modulation of promoter occupancy by cooperative DNA binding and activation-domain function is a major determinant of transcriptional regulation by activators in vivo. Proc. Natl. Acad. Sci. USA 93: 4311–4315.
  • Treich, I., B. R. Cairns, T. de los Santos, E. Brewster, and M. Carlson 1995. SNF11, a new component of the yeast SNF-SWI complex that interacts with a conserved region of SNF2. Mol. Cell. Biol. 15: 4240–4248.
  • Tsukiyama, T., and C. Wu 1995. Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83: 1011–1020.
  • Tsukiyama, T., P. B. Becker, and C. Wu 1994. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367: 525–532.
  • Varga-Weisz, P. D., M. Wilm, E. Bonte, K. Dumas, M. Mann, and P. B. Becker 1997. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388: 598–602.
  • Vashee, S., and T. Kodadek 1995. The activation domain of GAL4 protein mediates cooperative promoter binding with general transcription factors in vivo. Proc. Natl. Acad. Sci. USA 92: 10683–10687.
  • Venter, U., J. Svaren, J. Schmitz, A. Schmid, and W. Hörz 1994. A nucleosome precludes binding of the transcription factor Pho4 in vivo to a critical target site in the PHO5 promoter. EMBO J. 13: 4848–4855.
  • Vettese-Dady, M., P. Walter, H. Chen, L. J. Juan, and J. L. Workman 1994. Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Mol. Cell. Biol. 14: 970–981.
  • Wallrath, L. L., Q. Lu, H. Granok, and S. C. R. Elgin 1994. Architectural variations of inducible eukaryotic promoters: preset and remodeling chromatin structures. Bioessays 16: 165–170.
  • Wang, W., J. Coté, Y. Xue, S. Zhou, P. A. Khavari, S. R. Biggar, C. Muchardt, G. V. Kalpana, S. P. Goff, M. Yaniv, J. L. Workman, and G. R. Crabtree 1996. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15: 5370–5382.
  • Wechsler, M. A., M. P. Kladde, J. A. Alfieri, and C. L. Peterson 1997. Effects of Sin-versions of histone H4 on yeast chromatin structure and function. EMBO J. 16: 2086–2095.
  • Wilson, C. J., D. M. Chao, A. N. Imbalzano, G. R. Schnitzler, R. E. Kingston, and R. A. Young 1996. RNA polymerase II holoenzyme contains SWI/SNF transcriptional activators involved in chromatin remodeling. Cell 84: 235–244.
  • Winston, F., C. Dollard, and S. L. Ricupero-Hovasse 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11: 53–55.
  • Workman, J. L., and R. G. Roeder 1987. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 51: 613–622.
  • Wu, C. 1980. The 5′ ends of Drosophila heat-shock genes in chromatin are sensitive to DNase I. Nature 286: 854–860.
  • Wu, L., and F. Winston 1997. Evidence that Snf-Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae. Nucleic Acids Res. 25: 4230–4234.
  • Yoshinaga, S. K., C. L. Peterson, I. Herskowitz, and K. R. Yamamoto 1992. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258: 1598–1604.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.