27
Views
47
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Functional Interactions between Yeast Mitochondrial Ribosomes and mRNA 5′ Untranslated Leaders

, &
Pages 1826-1834 | Received 27 May 1997, Accepted 22 Dec 1997, Published online: 27 Mar 2023

REFERENCES

  • Alani, E., L. Cao, and N. Kleckner 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116: 541–545.
  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.
  • Anderson, M. S., M. Muehlbacher, I. P. Street, J. Proffitt, and C. D. Poulter 1989. Isopentenyl diphosphate:dimethylallyl diphosphate isomerase. An improved purification of the enzyme and isolation of the gene from Saccharomyces cerevisiae. J. Biol. Chem. 264: 19169–19175.
  • Boguta, M., A. Dmochowska, P. Borsuk, K. Wrobel, A. Gargouri, J. Lazowska, P. P. Slonimski, B. Szczesniak, and A. Kruszewska 1992. NAM9 nuclear suppressor of mitochondrial ochre mutations in Saccharomyces cerevisiae codes for a protein homologous to S4 ribosomal proteins from chloroplasts, bacteria, and eucaryotes. Mol. Cell. Biol. 12: 402–412.
  • Botstein, D., S. C. Falco, S. E. Stewart, M. Brennan, S. Scherer, D. T. Stinchcomb, K. Struhl, and R. W. Davis 1979. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8: 17–24.
  • Brown, N. G., M. C. Costanzo, and T. D. Fox 1994. Interactions among three proteins that specifically activate translation of the mitochondrial COX3 mRNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 1045–1053.
  • Bult, C. J., O. White, G. J. Olsen, L. Zhou, R. D. Fleischmann, G. G. Sutton, J. A. Glake, L. M. FitzGerald, R. A. Clayton, J. D. Gocayne, A. R. Kerlavage, B. A. Dougherty, J.-F. Tomb, M. D. Adams, C. I. Reich, R. Overbeek, E. F. Kirkness, K. G. Weinstock, J. M. Merrick, A. Glodek, J. L. Scott, N. S. M. Geoghagen, J. F. Weidman, J. L. Fuhrmann, D. Nguyen, T. R. Utterback, J. M. Kelley, J. D. Peterson, P. W. Sadow, M. C. Hanna, M. D. Cotton, K. M. Roberts, M. A. Hurst, B. P. Kaine, M. Borodovsky, H.-P. Klenk, C. M. Fraser, H. O. Smith, C. R. Woese, and J. C. Venter 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273: 1058–1073.
  • Capel, M. S., M. Kjeldgaard, D. M. Engelman, and P. B. Moore 1988. Positions of S2, S13, S16, S19, and S21 in the 30 S ribosomal subunit of Escherichia coli. J. Mol. Biol. 200: 65–87.
  • Costanzo, M. C., and T. D. Fox 1986. Product of Saccharomyces cerevisiae nuclear gene PET494 activates translation of a specific mitochondrial mRNA. Mol. Cell. Biol. 6: 3694–3703.
  • Costanzo, M. C., and T. D. Fox 1988. Specific translational activation by nuclear gene products occurs in the 5′ untranslated leader of a yeast mitochondrial mRNA. Proc. Natl. Acad. Sci. USA 85: 2677–2681.
  • Costanzo, M. C., and T. D. Fox 1990. Control of mitochondrial gene expression in Saccharomyces cerevisiae. Annu. Rev. Genet. 24: 91–113.
  • Costanzo, M. C., and T. D. Fox 1993. Suppression of a defect in the 5′-untranslated leader of the mitochondrial COX3 mRNA by a mutation affecting an mRNA-specific translational activator protein. Mol. Cell. Biol. 13: 4806–4813.
  • Costanzo, M. C., and T. D. Fox 1995. A point mutation in the 5′-untranslated leader that affects translation of the mitochondrial COX3 mRNA. Curr. Genet. 28: 60–66.
  • Costanzo, M. C., E. C. Seaver, and T. D. Fox 1986. At least two nuclear gene products are specifically required for translation of a single yeast mitochondrial mRNA. EMBO J. 5: 3637–3641.
  • Czworkowski, J., O. W. Odom, and B. Hardesty 1991. Fluorescence study of the topology of messenger RNA bound to the 30S ribosomal subunit of Escherichia coli. Biochemistry 30: 4821–4830.
  • Dabbs, E. R. 1980. The gene for ribosomal protein S21, rpsU, maps close to dnaG at 66.5 min on the Escherichia coli chromosomal linkage map. J. Bacteriol. 144: 603–607.
  • Dake, E., T. J. Hofmann, S. McIntire, A. Hudson, and H. P. Zassenhaus 1988. Purification and properties of the major nuclease from mitochondria of Saccharomyces cerevisiae. J. Biol. Chem. 263: 7691–7702.
  • Dang, H., and S. R. Ellis 1990. Structural and functional analyses of a yeast mitochondrial ribosomal protein homologous to ribosomal protein-S15 of Escherichia coli. Nucleic Acids Res. 18: 6895–6901.
  • Davis, S. C., A. Tzagoloff, and S. R. Ellis 1992. Characterization of a yeast mitochondrial ribosomal protein structurally related to the mammalian 68-kDa high affinity laminin receptor. J. Biol. Chem. 267: 5508–5514.
  • Dekker, P. J. T., B. Papadopoulou, and L. A. Grivell 1993. In-vitro translation of mitochondrial mRNAs by yeast mitochondrial ribosomes is hampered by the lack of start-codon recognition. Curr. Genet. 23: 22–27.
  • Dontsova, O., A. Kopylov, and R. Brimacombe 1991. The location of mRNA in the ribosomal 30S initiation complex: site-directed cross-linking of mRNA analogues carrying several photoreactive labels simultaneously on either side of the AUG start codon. EMBO J. 10: 2613–2620.
  • Dunstan, H. M., N. S. Green-Willms, and T. D. Fox 1997. In vivo analysis of Saccharomyces cerevisiae COX2 mRNA 5′-untranslated leader functions in mitochondrial translation initiation and translational activation. Genetics 147: 87–100.
  • Faye, G., and F. Sor 1977. Analysis of mitochondrial ribosomal proteins of Saccharomyces cerevisiae by two dimensional polyacrylamide gel electrophoresis. Mol. Gen. Genet. 155: 27–34.
  • Fearon, K., and T. L. Mason 1988. Structure and regulation of a nuclear gene in Saccharomyces cerevisiae that specifies MRP7, a protein of the large subunit of the mitochondrial ribosome. Mol. Cell. Biol. 8: 3636–3646.
  • Field, J., J.-I. Nikawa, D. Broek, B. MacDonald, L. Rodgers, I. A. Wilson, R. A. Lerner, and M. Wigler 1988. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol. 8: 2159–2165.
  • Folley, L. S., and T. D. Fox 1991. Site-directed mutagenesis of a Saccharomyces cerevisiae mitochondrial translation initiation codon. Genetics 129: 659–668.
  • Fox, T. D. 1996. Genetics of mitochondrial translation Translational control. In: Hershey, J. W. B., M. B. Matthews, and N. Sonenberg733–758Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
  • Fox, T. D., L. S. Folley, J. J. Mulero, T. W. McMullin, P. E. Thorsness, L. O. Hedin, and M. C. Costanzo 1991. Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol. 194: 149–165.
  • Glick, B. S., and L. A. Pon 1995. Isolation of highly purified mitochondria from Saccharomyces cerevisiae. Methods Enzymol. 260: 213–223.
  • Gray, M. W. 1993. Origin and evolution of organelle genomes. Curr. Opin. Genet. Dev. 3: 884–890.
  • Grivell, L. A. 1989. Nucleo-mitochondrial interactions in yeast mitochondrial biogenesis. Eur. J. Biochem. 182: 477–493.
  • Grohmann, L., M. Kitakawa, K. Isono, S. Goldschmidt-Reisin, and H.-R. Graack 1994. The yeast nuclear gene MRP-L13 codes for a protein of the large subunit of the mitochondrial ribosome. Curr. Genet. 26: 8–14.
  • Haffter, P., and T. D. Fox 1992. Suppression of carboxy-terminal truncations of the yeast mitochondrial mRNA-specific translational activator PET122 by mutations in two new genes, MRP17 and PET127. Mol. Gen. Genet. 235: 64–73.
  • Haffter, P., T. W. McMullin, and T. D. Fox 1990. A genetic link between an mRNA-specific translational activator and the translation system in yeast mitochondria. Genetics 125: 495–503.
  • Haffter, P., T. W. McMullin, and T. D. Fox 1991. Functional interactions among two yeast mitochondrial ribosomal proteins and an mRNA-specific translational activator. Genetics 127: 319–326.
  • Harlow, E., and D. Lane 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Hochuli, E. Purification of recombinant proteins with metal chelate adsorbent Genetic engineering, principle and methods In: Setlow, J. K.12199087–98Plenum Press, New York, N.Y.
  • Kloeckener-Gruissem, B., J. E. McEwen, and R. O. Poyton 1988. Identification of a third nuclear protein-coding gene required specifically for posttranscriptional expression of the mitochondrial COX3 gene in Saccharomyces cerevisiae. J. Bacteriol. 170: 1399–1402.
  • Kotter, P., and K. D. Entian 1995. Cloning and analysis of the nuclear gene MRP-S9 encoding mitochondrial ribosomal protein S9 of Saccharomyces cerevisiae. Curr. Genet. 28: 26–31.
  • Lupski, J. R., B. L. Smiley, and G. N. Godson 1983. Regulation of the rpsU-dnaG-rpoD macromolecular synthesis operon and the initiation of DNA replication in Escherichia coli K-12. Mol. Gen. Genet. 189: 48–57.
  • Marykwas, D. L., and T. D. Fox 1989. Control of the Saccharomyces cerevisiae regulatory gene PET494: transcriptional repression by glucose and translational induction by oxygen. Mol. Cell. Biol. 9: 484–491.
  • McMullin, T. W., P. Haffter, and T. D. Fox 1990. A novel small-subunit ribosomal protein of yeast mitochondria that interacts functionally with an mRNA-specific translational activator. Mol. Cell. Biol. 10: 4590–4595.
  • Mieszczak, M., M. Kozlowski, and W. Zagorski 1988. Protein composition of Saccharomyces cerevisiae mitochondrial ribosomes. Acta Biochim. Pol. 35: 105–118.
  • Mulero, J. J. 1993. Studies on the translation of the yeast mitochondrial COX2 mRNA with emphasis on its translational activator PET111. Ph.D. thesis. Cornell University, Ithaca, N.Y.
  • Mulero, J. J., and T. D. Fox 1993. Alteration of the Saccharomyces cerevisiae COX2 5′-untranslated leader by mitochondrial gene replacement and functional interaction with the translational activator protein PET111. Mol. Biol. Cell 4: 1327–1335.
  • Mulero, J. J., and T. D. Fox 1993. PET111 acts in the 5′-leader of the Saccharomyces cerevisiae mitochondrial COX2 mRNA to promote its translation. Genetics 133: 509–516.
  • Mulero, J. J., and T. D. Fox 1994. Reduced but accurate translation from a mutant AUA initiation codon in the mitochondrial COX2 mRNA of Saccharomyces cerevisiae. Mol. Gen. Genet. 242: 383–390.
  • Muralikrishna, P., and B. S. Cooperman 1994. A photolabile oligodeoxyribonucleotide probe of the decoding site in the small subunit of the Escherichia coli ribosome: identification of neighboring ribosomal components. Biochemistry 33: 1392–1398.
  • Myers, A. M., M. D. Crivellone, and A. Tzagoloff 1987. Assembly of the mitochondrial membrane system: MRP1 and MRP2, two yeast nuclear genes coding for mitochondrial ribosomal proteins. J. Biol. Chem. 262: 3388–3397.
  • Myers, A. M., L. K. Pape, and A. Tzagoloff 1985. Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae. EMBO J. 4: 2087–2092.
  • Ooi, B. G., H. B. Lukins, A. W. Linnane, and P. Nagley 1987. Biogenesis of mitochondria: a mutation in the 5′-untranslated region of yeast mitochondrial oli1 mRNA leading to impairment in translation of subunit 9 of the mitochondrial ATPase complex. Nucleic Acids Res. 15: 1965–1977.
  • Orr-Weaver, T. L., and J. W. Szostak 1983. Yeast recombination: the association between double-strand gap repair and crossing-over. Proc. Natl. Acad. Sci. USA 80: 4417–4421.
  • Partaledis, J. A., and T. L. Mason 1988. Structure and regulation of a nuclear gene in Saccharomyces cerevisiae that specifies MRP13, a protein of the small subunit of the mitochondrial ribosome. Mol. Cell. Biol. 8: 3647–3660.
  • Poutre, C. G., and T. D. Fox 1987. PET111, a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit II. Genetics 115: 637–647.
  • Ringquist, S., S. Shinedling, D. Barrick, L. Green, J. Binkley, G. D. Stormo, and L. Gold 1992. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol. Microbiol. 6: 1219–1229.
  • Rose, M. D., and J. R. Broach 1991. Cloning genes by complementation in yeast. Methods Enzymol. 194: 195–230.
  • Rosenblum-Vos, L. S., L. Rhodes, Evangelista C. C., Jr., K. A. Boayke, and R. S. Zitomer 1991. The ROX3 gene encodes an essential nuclear protein involved in CYC7 gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 5639–5647.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Shamu, C., and J. Nunnari. Personal communication.
  • Sherman, F., G. R. Fink, and J. B. Hicks 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Shine, J., and L. Dalgarno 1974. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA 71: 1342–1346.
  • Sikorski, R. S., and P. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • Steele, D. F., C. A. Butler, and T. D. Fox 1996. Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc. Natl. Acad. Sci. USA 93: 5253–5257.
  • Struhl, K., D. T. Stinchcomb, S. Scherer, and R. W. Davis 1979. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76: 1035–1039.
  • Tyers, M., G. Tokiwa, R. Nash, and B. Futcher 1992. The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J. 11: 1773–1784.
  • Weinstock, K. G., and J. N. Strathern 1993. Molecular genetics in Saccharomyces kluyveri: the HIS3 homolog and its use as a selectable marker gene in S. kluyveri and Saccharomyces cerevisiae. Yeast 9: 351–361.
  • Wiesenberger, G., M. C. Costanzo, and T. D. Fox 1995. Analysis of the Saccharomyces cerevisiae mitochondrial COX3 mRNA 5′-untranslated leader: translational activation and mRNA processing. Mol. Cell. Biol. 15: 3291–3300.
  • Wool, I. G., Y.-L. Chan, and A. Glück 1996. Mammalian ribosomes: the structure and the evolution of the proteins Translational control. In: Hershey, J. W. B., M. B. Matthews, and N. Sonenberg685–732Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
  • Yang, D., Y. Oyaizu, H. Oyaizu, G. J. Olsen, and C. R. Woese 1985. Mitochondrial origins. Proc. Natl. Acad. Sci. USA 82: 4443–4447.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.