12
Views
211
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

NF-κB2 Is a Putative Target Gene of Activated Notch-1 via RBP-Jκ

, , &
Pages 2077-2088 | Received 18 Sep 1997, Accepted 16 Jan 1998, Published online: 27 Mar 2023

REFERENCES

  • Amakawa, R., W. Jing, K. Ozawa, N. Matsunami, Y. Hamaguchi, F. Matsuda, M. Kawaichi, and T. Honjo 1993. Human Jκ recombination signal binding protein gene (IGKJRB): comparison with its mouse homologue. Genomics 17: 306–315.
  • Artavanis-Tsakonas, S., K. Matsuno, and M. E. Fortini 1995. Notch signaling. Science 268: 225–232.
  • Baeuerle, P. A., and D. Baltimore 1996. NF-κB: ten years after. Cell 87: 13–20.
  • Baeuerle, P. A., and T. Henkel 1994. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12: 141–179.
  • Baldwin, A. S.Jr. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14: 649–683.
  • Beg, A. A., and D. Baltimore 1996. An essential role for NF-κB in preventing TNF-α-induced cell death. Science 274: 782–784.
  • Bours, V., E. Dejardin, F. Goujon-Letawe, M. P. Merville, and V. Castronovo 1994. The NF-κB transcription factor and cancer: high expression of NF-κB- and IκB-related proteins in tumor cell lines. Biochem. Pharmacol. 47: 145–149.
  • Brou, C., F. Logeat, M. Lecourtois, J. Vandekerckhove, P. Kourilsky, F. Schweisguth, and A. Israel 1994. Inhibition of the DNA-binding activity of Drosophila suppressor of hairless and of its human homolog, KBF2/RBP-Jκ, by direct protein-protein interaction with Drosophila hairless. Genes Dev. 8: 2491–2503.
  • Brown, A. M., M. W. Linhoff, B. Stein, K. L. Wright, Baldwin A. S., Jr., P. V. Basta, and J. P.-Y. Ting 1994. Function of NF-κB/Rel binding sites in the major histocompatibility complex class II invariant chain promoter is dependent on cell-specific binding of different NF-κB/Rel subunits. Mol. Cell. Biol. 14: 2926–2935.
  • Dejardin, E., G. Bonizzi, A. Bellahcene, V. Castronovo, M. P. Merville, and V. Bours 1995. Highly-expressed p100/p52 (NFKB2) sequesters other NF-κB-related proteins in the cytoplasm of human breast cancer cells. Oncogene 11: 1835–1841.
  • Dou, S., X. Zeng, P. Cortes, H. Erdjument-Bromage, P. Tempst, T. Honjo, and L. D. Vales 1994. The recombination signal sequence-binding protein RBP-2N functions as a transcriptional repressor. Mol. Cell. Biol. 14: 3310–3319.
  • Duckett, C. S., N. D. Perkins, T. F. Kowalik, R. M. Schmid, E.-S. Huang, Baldwin A. S., Jr., and G. J. Nabel 1993. Dimerization of NF-KB2 with RelA(p65) regulates DNA binding, transcriptional activation, and inhibition by an IκB-α (MAD-3). Mol. Cell. Biol. 13: 1315–1322.
  • Ellisen, L. W., J. Bird, D. C. West, A. L. Soreng, T. C. Reynolds, S. D. Smith, and J. Sklar 1991. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66: 649–661.
  • Fortini, M. E., and S. Artavanis-Tsakonas 1994. The suppressor of hairless protein participates in Notch receptor signaling. Cell 79: 273–282.
  • Furukawa, T., S. Maruyama, M. Kawaichi, and T. Honjo 1992. The Drosophila homolog of the immunoglobulin recombination signal-binding protein regulates peripheral nervous system development. Cell 69: 1191–1197.
  • Gilmore, T. D., M. Koedood, K. A. Piffat, and D. W. White 1996. Rel/NF-κB/IκB proteins and cancer. Oncogene 13: 1367–1378.
  • Girard, L., Z. Hanna, N. Beaulieu, C. D. Hoemann, C. Simard, and C. A. Kozak 1996. Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Gene Dev. 10: 1930–1944.
  • Grilli, M., J. J. Chiu, and M. J. Lenardo 1993. NF-κB and Rel: participants in a multiform transcriptional regulatory system. Int. Rev. Cytol. 143: 1–62.
  • Grossman, S. R., E. Johannsen, X. Tong, R. Yalamanchili, and E. Kieff 1994. The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the Jκ recombination signal binding protein. Proc. Natl. Acad. Sci. USA 91: 7568–7572.
  • Guan, E., J. Wang, J. Laborda, M. Norcross, P. A. Baeuerle, and T. Hoffman 1996. T cell leukemia-associated human Notch/translocation-associated Notch homologue has IκB-like activity and physically interacts with nuclear factor-κB proteins in T cells. J. Exp. Med. 183: 2025–2032.
  • Hamaguchi, Y., Y. Yamamoto, H. Iwanari, S. Maruyama, T. Furukawa, N. Matsunami, and T. Honjo 1992. Biochemical and immunological characterization of the DNA binding protein (RBP-Jκ) to mouse Jκ recombination signal sequence. J. Biochem. 112: 314–320.
  • Henkel, T., P. D. Ling, S. D. Hayward, and M. G. Peterson 1994. Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein Jκ. Science 265: 92–95.
  • Hohmann, H.-P., R. Remy, C. Scheidereit, and A. P. G. M. van Loon 1991. Maintenance of NF-κB activity is dependent on protein synthesis and the continuous presence of external stimuli. Mol. Cell. Biol. 11: 259–266.
  • Hsieh, J. J., and S. D. Hayward 1995. Masking of the CBF1/RBPJκ transcriptional repression domain by Epstein-Barr virus EBNA2. Science 268: 560–563.
  • Hsieh, J. J.-D., T. Henkel, P. Salmon, E. Robey, M. G. Peterson, and S. D. Hayward 1996. Truncated mammalian Notch1 activates CBF1/RBPJκ-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2. Mol. Cell. Biol. 16: 952–959.
  • Hsieh, J. J.-D., D. E. Nofziger, G. Weinmaster, and S. D. Hayward 1997. Epstein-Barr virus immortalization: Notch2 interacts with CBF1 and blocks differentiation. J. Virol. 71: 1938–1945.
  • Israel, A., O. Yano, F. Logeat, M. Kieran, and P. Kourilsky 1989. Two purified factors bind to the same sequence in the enhancer of mouse MHC class I genes: one of them is a positive regulator induced upon differentiation of teratocarcinoma cells. Nucleic Acids Res. 17: 5245–5257.
  • Ito, C. Y., A. G. Kazantsev, and A. S. Baldwin 1994. Three NF-κB sites in the IκB-α promoter are required for induction of gene expression by TNFα. Nucleic Acids Res. 22: 3787–3792.
  • Jarriault, S., C. Brou, F. Logeat, E. H. Schroeter, R. Kopan, and A. Israel 1995. Signalling downstream of activated mammalian Notch. Nature (London) 377: 355–358.
  • Kannabiran, C., X. Zeng, and L. D. Vales 1997. The mammalian transcriptional repressor RBP (CBF1) regulates interleukin-6 gene expression. Mol. Cell. Biol. 17: 1–9.
  • Kato, H., T. Sakai, K. Tamura, S. Minoguchi, Y. Shirayoshi, Y. Hamada, Y. Tsujimoto, and T. Honjo 1996. Functional conservation of mouse Notch receptor family members. FEBS Lett. 395: 221–224.
  • Kopan, R., J. S. Nye, and H. Weintraub 1994. The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120: 2385–2396.
  • Lehming, N., D. Thanos, J. M. Brickman, J. Ma, T. Maniatis, and M. Ptashne 1994. An HMG-like protein that can switch a transcriptional activator to a repressor. Nature (London) 371: 175–179.
  • Liptay, S., R. M. Schmid, E. G. Nabel, and G. J. Nabel 1994. Transcriptional regulation of NF-κB2: evidence for κB-mediated positive and negative autoregulation. Mol. Cell. Biol. 14: 7695–7703.
  • Liptay, S., R. M. Schmid, N. D. Perkins, P. Meltzer, M. R. Altherr, J. D. McPherson, J. Wasmuth, and G. J. Nabel 1992. Related subunits of NF-κB map to two distinct loci associated with translocations in leukemia, NFKB1 and NFKB2. Genomics 13: 287–292.
  • Liu, Z. G., H. Hsu, D. V. Goeddel, and M. Karin 1996. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 87: 565–576.
  • Lu, S.-Y., M. Rodriguez, and W. S.-L. Liao 1994. YY1 represses rat serum amyloid A1 gene transcription and is antagonized by NF-κB during acute-phase response. Mol. Cell. Biol. 14: 6253–6263.
  • Matsunami, N., Y. Hamaguchi, Y. Yamamoto, K. Kuze, K. Kangawa, H. Matsuo, M. Kawaichi, and T. Honjo 1989. A protein binding to the Jκ recombination sequence of immunoglobulin genes contains a sequence related to the integrase motif. Nature (London) 342: 934–937.
  • Mercurio, F., J. A. DiDonato, C. Rosette, and M. Karin 1993. p105 and p98 precursor proteins play an active role in NF-κB-mediated signal transduction. Genes Dev. 7: 705–718.
  • Milner, L. A., A. Bigas, R. Kopan, C. Brashem-Stein, I. D. Bernstein, and D. I. Martin 1996. Inhibition of granulocytic differentiation by mNotch1. Proc. Natl. Acad. Sci. USA 93: 13014–13019.
  • Nye, J. S., R. Kopan, and R. Axel 1994. An activated Notch suppresses neurogenesis and myogenesis but not gliogenesis in mammalian cells. Development 120: 2421–2430.
  • Oliveira, I. C., N. Mukaida, K. Matsushima, and J. Vilček 1994. Transcriptional inhibition of the interleukin-8 gene by interferon is mediated by the NF-κB site. Mol. Cell. Biol. 14: 5300–5308.
  • Perkins, N. D., R. M. Schmid, C. S. Duckett, K. Leung, N. R. Rice, and G. J. Nabel 1992. Distinct combinations of NF-κB subunits determine the specificity of transcriptional activation. Proc. Natl. Acad. Sci. USA 89: 1529–1533.
  • Plaisance, S., W. Vanden Berghe, E. Boone, W. Fiers, and G. Haegeman 1997. Recombination signal sequence binding protein Jκ is constitutively bound to the NF-κB site of the interleukin-6 promoter and acts as a negative regulatory factor. Mol. Cell. Biol. 17: 3733–3743.
  • Robey, E., D. Chang, A. Itano, D. Cado, H. Alexander, D. Lans, G. Weinmaster, and P. Salmon 1996. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87: 483–492.
  • Sakai, T., T. Furukawa, H. Iwanari, C. Oka, T. Nakano, M. Kawaichi, and T. Honjo 1995. Loss of immunostaining of the RBP-Jκ transcription factor upon F9 cell differentiation induced by retinoic acid. J. Biochem. 118: 621–628.
  • Sasai, Y., R. Kageyama, Y. Tagawa, R. Shigemoto, and S. Nakanishi 1992. Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev. 6: 2620–2634.
  • Schmid, R. M., S. Liptay, J. C. Betts, and G. J. Nabel 1994. Structural and functional analysis of NF-κB. Determinants of DNA binding specificity and protein interaction. J. Biol. Chem. 269: 32162–32167.
  • Schmid, R. M., N. D. Perkins, C. S. Duckett, P. C. Andrews, and G. J. Nabel 1991. Cloning of an NF-κB subunit which stimulates HIV transcription in synergy with p65. Nature (London) 352: 733–736.
  • Schweisguth, F., and J. W. Posakony 1992. Suppressor of Hairless, the Drosophila homolog of the mouse recombination signal-binding protein gene, controls sensory organ cell fates. Cell 69: 1199–1212.
  • Shirakata, Y., J. D. Shuman, and J. E. Coligan 1996. Purification of a novel MHC class I element binding activity from thymus nuclear extracts reveals that thymic RBP-Jκ/CBF1 binds to NF-κB-like elements. J. Immunol. 156: 4672–4679.
  • Tamura, K., Y. Taniguchi, S. Minoguchi, T. Sakai, T. Tun, T. Furukawa, and T. Honjo 1995. Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-Jκ/Su(H). Curr. Biol. 5: 1416–1423.
  • Ten, R. M., C. V. Paya, N. Israel, O. Le Bail, M. G. Mattei, J. L. Virelizier, P. Kourilsky, and A. Israel 1992. The characterization of the promoter of the gene encoding the p50 subunit of NF-κB indicates that it participates in its own regulation. EMBO J. 11: 195–203.
  • Thanos, D., and T. Maniatis 1995. NF-κB: a lesson in family values. Cell 80: 529–532.
  • Tun, T., Y. Hamaguchi, N. Matsunami, T. Furukawa, T. Honjo, and M. Kawaichi 1994. Recognition sequence of a highly conserved DNA binding protein, RBP-Jκ. Nucleic Acids Res. 22: 965–971.
  • Van Antwerp, D. J., S. J. Martin, T. Kafri, D. R. Green, and I. M. Verma 1996. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274: 787–789.
  • Verma, I. M., J. K. Stevenson, E. M. Schwarz, D. Van Antwerp, and S. Miyamoto 1995. Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 9: 2723–2735.
  • Waltzer, L., P. Y. Bourillot, A. Sergeant, and E. Manet 1995. RBP-Jκ repression activity is mediated by a co-repressor and antagonized by the Epstein-Barr virus transcription factor EBNA2. Nucleic Acids Res. 23: 4939–4945.
  • Waltzer, L., F. Logeat, C. Brou, A. Israel, A. Sergeant, and E. Manet 1994. The human Jκ recombination signal sequence binding protein (RBP-Jκ) targets the Epstein-Barr virus EBNA2 protein to its DNA responsive elements. EMBO J. 13: 5633–5638.
  • Wang, C. Y., M. W. Mayo, Baldwin A. S., Jr. 1996. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274: 784–787.
  • Washburn, T., E. Schweighoffer, T. Gridley, D. Chang, B. J. Fowlkes, D. Cado, and E. Robey 1997. Notch activity influences the αβ versus γδ T cell lineage decision. Cell 88: 833–843.
  • Wu, M., H. Lee, R. E. Bellas, S. L. Schauer, M. Asura, D. Katz, M. J. Fitzgerald, T. L. Rothstein, D. H. Sherr, and G. E. Sonenshein 1996. Inhibition of NF-κB/Rel induces apoptosis of murine B cells. EMBO J. 15: 4682–4690.
  • Zagouras, P., S. Stifani, C. M. Blaumueller, M. L. Carcangiu, and S. Artavanis-Tsakonas 1995. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc. Natl. Acad. Sci. USA 92: 6414–6418.
  • Zimber-Strobl, U., L. J. Strobl, C. Meitinger, R. Hinrichs, T. Sakai, T. Furukawa, T. Honjo, and G. W. Bornkamm 1994. Epstein-Barr virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal binding protein RBP-Jκ, the homologue of Drosophila Suppressor of Hairless. EMBO J. 13: 4973–4982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.