25
Views
257
CrossRef citations to date
0
Altmetric
Cell Growth and Development

A Conserved Negative Regulatory Region in αPAK: Inhibition of PAK Kinases Reveals Their Morphological Roles Downstream of Cdc42 and Rac1

, , , , &
Pages 2153-2163 | Received 17 Sep 1997, Accepted 22 Dec 1997, Published online: 27 Mar 2023

REFERENCES

  • Aspenstrom, P., U. Lindberg, and A. Hall 1995. Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome. Curr. Biol. 6: 70–75.
  • Bagrodia, S., B. Derijard, R. J. Davis, and R. A. Cerione 1995. Cdc42 and PAK-mediated signalling leads to JNK and p38 mitogen-activated protein kinase activation. J. Biol. Chem. 270: 27995–27998.
  • Bagrodia, S., S. J. Taylor, C. L. Creasy, J. Chernoff, and R. A. Cerione 1995. Identification of a mouse p21cdc42/rac activated kinase. J. Biol. Chem. 270: 22731–22737.
  • Benner, G. E., P. B. Dennis, and R. A. Masaracchia 1995. Activation of an S6/H4 kinase (PAK 65) from human placenta by intramolecular and intermolecular autophosphorylation. J. Biol. Chem. 270: 21121–21128.
  • Bokoch, G. M., Y. Wang, B. P. Bohl, M. A. Sells, L. A. Quilliam, and U. G. Knaus 1996. Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J. Biol. Chem. 271: 25746–25749.
  • Brown, J. L., L. Stowers, M. Baer, J. A. Trejo, S. Coughlin, and J. Chant 1996. Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Curr. Biol. 6: 598–605.
  • Burbelo, P. D., D. Drechsel, and A. Hall 1995. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270: 29071–29074.
  • Coso, O. A., M. Chiariello, J. C. Yu, H. Teramoto, P. Crespo, N. Xu, T. Miki, and J. S. Gutkind 1995. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signalling pathway. Cell 81: 1137–1146.
  • Coussens, L., P. J. Parker, L. Rhee, T. L. Yang-Feng, E. Chen, M. D. Waterfield, U. Francke, and A. Ullrich 1986. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signalling pathways. Science 233: 859–866.
  • Edelman, A. M., K. Takio, D. K. Blumenthal, R. S. Hansen, K. A. Walsh, K. Titani, and E. G. Krebs 1985. Characterization of the calmodulin-binding and catalytic domains in skeletal muscle myosin light chain kinase. J. Biol. Chem. 260: 11275–11285.
  • Galisteo, M. L., J. Chernoff, Y.-C. Su, E. Y. Skolnik, and J. Schlessinger 1996. The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. J. Biol. Chem. 271: 20997–21000.
  • House, C., and B. E. Kemp 1987. Protein kinase C contains a pseudosubstrate prototype in its regulatory domain. Science 238: 1726–1728.
  • Ishizaki, T., M. Maekawa, K. Fujisawa, K. Okawa, A. Iwamatsu, A. Fujita, N. Watanabe, Y. Saito, A. Kakizuka, N. Morii, and S. Narumiya 1996. The small GTP-binding protein Rho binds to and activates a 160 kda Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 15: 1885–1893.
  • Ito, M., Guerriero, V.Jr., X. M. Chen, and D. J. Hartshorne 1991. Definition of the inhibitory domain of smooth muscle myosin light chain kinase by site-directed mutagenesis. Biochemistry 30: 3498–3503.
  • Joneson, T., M. McDonough, D. Bar-Sagi, and L. Van Aelst 1996. RAC regulation of actin polymerization and proliferation by a pathway distinct from Jun kinase. Science 274: 1374–1376.
  • Kemp, B. E., M. W. Parker, S. Hu, T. Tiganis, and C. House 1994. Substrate and pseudosubstrate interactions with protein kinases: determinants of specificity. Trends Biochem. Sci. 19: 440–444.
  • Kennelly, P. J., A. M. Edelman, D. K. Blumenthal, and E. G. Krebs 1987. Rabbit skeletal muscle myosin light chain kinase. The calmodulin binding domain as a potential active site-directed inhibitory domain. J. Biol. Chem. 262: 11958–11963.
  • Kolluri, R., K. F. Tolias, C. L. Carpenter, F. S. Rosen, and T. Kirchhausen 1996. Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cdc42. Proc. Natl. Acad. Sci. USA 93: 5615–5618.
  • Kozma, R., S. Ahmed, A. Best, and L. Lim 1995. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15: 1942–1952.
  • Kozma, R., S. Sarner, S. Ahmed, and L. Lim 1997. Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell. Biol. 17: 1201–1211.
  • Lamarche, N., N. Tapon, L. Stowers, P. D. Burbelo, P. Aspenstrom, T. Bridges, J. Chant, and A. Hall 1996. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87: 519–529.
  • Leberer, E., D. Dignard, D. Harcus, D. Y. Thomas, and M. Whiteway 1992. The protein kinase homologue Steo20p is required to link the yeast pheromone response G-protein βγ subunits to downstream signalling components. EMBO J. 11: 4815–4824.
  • Leberer, E., C. Wu, T. Leeuw, A. Fourest-Lieuvin, J. E. Segall, and D. Y. Thomas 1997. Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase. EMBO J. 16: 83–97.
  • Leung, T., E. Manser, L. Tan, and L. Lim 1995. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 270: 29051–29054.
  • Leung, T., X.-Q. Chen, E. Manser, and L. Lim 1996. The p160 RhoA-binding kinase ROKα is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell. Biol. 16: 5313–5327.
  • Leung, T., X.-Q. Chen, I. Tan, E. Manser, and L. Lim 1998. Myotonic dystrophy kinase-related Cdc42-binding kinase acts as a Cdc42 effector in promoting cytoskeletal reorganization. Mol. Cell. Biol. 18: 130–140.
  • Lim, L., E. Manser, T. Leung, and C. Hall 1996. Regulation of phosphorylation pathways by p21 GTPases. Eur. J. Biochem. 242: 171–185.
  • Liu, H., C. Styles, and G. R. Fink 1993. Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262: 1741–1744.
  • Lu, W., S. Katz, R. Gupta, and B. J. Mayer 1997. Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr. Biol. 7: 85–94.
  • Manser, E., T. Leung, C. Monfries, M. Teo, C. Hall, and L. Lim 1992. Diversity and versatility of GTPase activating proteins for the p21rho subfamily of ras G proteins detected by a novel overlay assay. J. Biol. Chem. 267: 16025–16028.
  • Manser, E., T. Leung, H. Salihuddin, L. Tan, and L. Lim 1993. A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. Nature 363: 364–367.
  • Manser, E., T. Leung, H. Salihuddin, Z.-S. Zhao, and L. Lim 1994. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367: 40–46.
  • Manser, E., C. Chong, Z.-S. Zhao, T. Leung, G. Michael, C. Hall, and L. Lim 1995. Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J. Biol. Chem. 270: 25070–25078.
  • Manser, E., H.-Y. Huang, T.-H. Loo, X.-Q. Chen, J.-M. Dong, T. Leung, and L. Lim 1997. Expression of constitutively active α-PAK reveals effects of the kinase on actin and focal complexes. Mol. Cell. Biol. 17: 1129–1143.
  • Manser, E., T.-H. Loo, C.-G. Koh, Z.-S. Zhao, I. Tan, T. Leung, and L. Lim 1998. A family of guanine nucleotide exchange factors (PIXs) is directly coupled to the p21(Cdc42 and Rac)-activated kinase αPAK. Mol. Cell 1: 183–192.
  • Martin, G. A., G. Bollag, F. A. McCormick, and A. Abo 1995. A novel serine kinase activated by rac/Cdc42Hs-dependent autophosphorylation is related to PAK65 and Ste20. EMBO J. 14: 1970–1978.
  • Matsui, T., M. Amano, T. Yamamoto, K. Chilhara, M. Nakafuku, M. Ito, T. Nakano, K. Okawa, A. Iwamamatsu, and K. Kaibuchi 1996. Rho-associated kinase, a novel serine threonine kinase, as a putative target for the small GTP-binding protein Rho. EMBO J. 15: 2208–2216.
  • Minden, A., A. Lin, F.-X. Claret, A. Abo, and M. Karin 1995. Selective activation of the JNK signalling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81: 1147–1157.
  • Nobes, C. D., and A. Hall 1995. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibres, lamellipodia, and filopodia. Cell 81: 53–62.
  • Nonaka, H., K. Tanaka, H. Hirano, T. Fujiwara, H. Kohno, M. Umikawa, A. Mino, and Y. Takai 1995. A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J. 14: 5931–5938.
  • Olson, M. F., A. Ashworth, and A. Hall 1995. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269: 1270–1272.
  • Parker, P. J., L. Coussens, N. Totty, L. Rhee, S. Young, E. Chen, S. Stabel, M. D. Waterfield, and A. Ullrich 1986. The complete primary structure of protein kinase C—the major phorbol ester receptor. Science 233: 853–859.
  • Peppelenbosch, M. P., R.-G. Qiu, A. M. M. de Vries-Smits, L. G. J. Tertoolen, S. W. de Laat, F. McCormick, A. Hall, M. H. Symons, and J. L. Bos 1995. Rac mediates growth factor-induced arachidonic acid release. Cell 81: 849–856.
  • Peter, M., A. M. Neiman, H.-O. Park, M. van Lohuizen, and I. Herskowitz 1996. Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J. 15: 7046–7059.
  • Polverino, A., J. Frost, P. Yang, M. Hutchison, A. M. Neiman, M. H. Cobb, and S. Marcus 1995. Activation of mitogen-activated protein kinase cascades by p21-activated protein kinases in cell-free extracts of Xenopus oocytes. J. Biol. Chem. 270: 26067–26070.
  • Ridley, A. J., and A. Hall 1992. The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibres in response to growth factors. Cell 70: 389–399.
  • Ridley, A. J., H. F. Paterson, C. L. Johnston, D. Diekmann, and A. Hall 1992. The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell 70: 401–410.
  • Rudel, T., and G. M. Bokoch 1997. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276: 1571–1574.
  • Sells, M. A., and J. Chernoff 1997. Emerging from the Pak: the p21-activated protein kinase family. Trends Cell Biol. 7: 162–167.
  • Sells, M. A., U. G. Knaus, S. Bagrodia, D. M. Ambrose, G. M. Bokoch, and J. Chernoff 1997. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr. Biol. 7: 202–210.
  • Simon, M. N., C. Devirgilio, B. Souza, J. R. Pringle, A. Abo, and S. I. Reed 1995. Role for the Rho-family GTPase Cdc42 in yeast mating pheromone signal pathway. Nature 376: 702–705.
  • Soderling, T. R. 1990. Protein kinases. Regulation by autoinhibitory domains. J. Biol. Chem. 265: 1823–1826.
  • Symons, M., J. M. J. Derry, B. Karlak, S. Jiang, V. Lemahieu, F. McCormick, U. Francke, and A. Abo 1996. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase Cdc42Hs, is implicated in actin polymerization. Cell 84: 723–734.
  • Tapon, N., and A. Hall 1997. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr. Opin. Cell Biol. 9: 86–92.
  • Teo, M., E. Manser, and L. Lim 1995. Identification and molecular cloning of a p21cdc42/rac1-activated serine/threonine kinase that is rapidly activated by thrombin in platelets. J. Biol. Chem. 270: 26690–26697.
  • Van Aelst, L., T. Joneson, and D. Bar-Sagi 1996. Identification of a novel Rac1-interacting protein involved in membrane ruffling. EMBO J. 15: 3778–3786.
  • Watanabe, G., Y. Saito, P. Madaule, T. Ishizaki, K. Fujisawa, N. Morii, H. Mukai, Y. Ono, A. Kakizuka, and S. Narumiya 1996. Protein kinase N (PKN) and PKN-related protein rhophilin as targets of the small GTPase Rho. Science 271: 645–648.
  • Watanabe, N., P. Madaule, T. Reid, T. Ishizaki, G. Watanabe, A. Kakizuka, Y. Saito, K. Nakao, B. M. Jockusch, and S. Narumiya 1997. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16: 3044–3056.
  • Westwick, J. K., Q. T. Lambert, G. J. Clarke, M. Symons, L. Van Aelst, R. G. Pestell, and C. J. Der 1997. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol. 17: 1324–1335.
  • Zhang, S., J. Han, M. A. Sells, J. Chernoff, U. G. Knaus, R. J. Ulevitch, and G. M. Bokoch 1995. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J. Biol. Chem. 270: 23934–23936.
  • Zhao, Z.-S., T. Leung, E. Manser, and L. Lim 1995. Pheromone signalling in Saccharomyces cerevisiae requires the small GTP-binding protein Cdc42p and its activator CDC24. Mol. Cell. Biol. 15: 5246–5257.
  • Ziman, M., J. M. O’Brien, L. A. Ouellette, W. R. Church, and D. I. Johnson 1991. Mutational analysis of CDC42Sc, a Saccharomyces cerevisiae gene that encodes a putative GTP-binding protein involved in the control of cell polarity. Mol. Cell. Biol. 11: 3537–3544.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.