41
Views
110
CrossRef citations to date
0
Altmetric
Gene Expression

Yeast 18S rRNA Dimethylase Dim1p: a Quality Control Mechanism in Ribosome Synthesis?

, &
Pages 2360-2370 | Received 24 Oct 1997, Accepted 21 Jan 1998, Published online: 27 Mar 2023

REFERENCES

  • Aris, J. P., and G. Blobel 1988. Identification and characterization of a yeast nucleolar protein that is similar to a rat liver nucleolar protein. J. Cell Biol. 107: 17–31.
  • Baudin, A., O. Ozier-Kalogeropoulos, A. Denouel, F. Lacroute, and C. Cullin 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21: 3329–3330.
  • Berben, G., J. Dumont, V. Gilliquet, P.-A. Bolle, and F. Hilger 1991. The YDp plasmids: a uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae. Yeast 7: 475–477.
  • Boeke, J. D., F. Lacroute, and G. R. Fink 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197: 345–346.
  • Bonneaud, N., O. Ozier-Kalogeropoulos, G. Li, M. Labouesse, L. Minvielle-Sebastia, and F. Lacroute 1991. A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7: 609–615.
  • Brand, R. C., J. Klootwijk, T. J. M. van Steenbergen, A. J. de Kok, and R. J. Planta 1977. Secondary methylation of yeast ribosomal precursor RNA. Eur. J. Biochem. 75: 311–318.
  • Brimacombe, R., P. Mitchell, M. Osswald, K. Stade, and D. Bochkarriov 1993. Clustering of modified nucleotides at the functional center of bacterial ribosomal RNA. FASEB J. 7: 161–167.
  • Cavaillé, J., M. Nicoloso, and J.-P. Bachellerie 1996. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383: 732–735.
  • Cheng, X., S. Kumar, J. Posfai, J. W. Pflugrath, and R. J. Roberts 1993. Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-l-methionine. Cell 74: 299–307.
  • Cunningham, P. R., C. J. Weitzmann, K. Nurse, R. Masurel, P. H. van Knippenberg, and J. Ofengand 1990. Site-specific mutation of the conserved m26Am26A residues of E. coli 16S ribosomal RNA. Effects on ribosome function and activity of the ksgA methyltransferase. Biochim. Biophys. Acta 1050: 18–26.
  • Fabian, G. R., and A. K. Hopper 1987. RRP1, a Saccharomyces cerevisiae gene affecting rRNA processing and production of mature ribosomal subunits. J. Bacteriol. 169: 1571–1578.
  • Ganot, P., M.-L. Bortolin, and T. Kiss 1997. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89: 799–809.
  • Gietz, D., A. St. Jean, R. A. Woods, and R. H. Schiestl 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20: 1425.
  • Helser, T. L., J. E. Davies, and J. E. Dahlberg 1971. Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nat. New Biol. 233: 12–14.
  • Helser, T. L., J. E. Davies, and J. E. Dahlberg 1972. Mechanism of kasugamycin resistance in Escherichia coli. Nature New Biol. 235: 6–9.
  • Henry, Y., H. Wood, J. P. Morrissey, E. Petfalski, S. Kearsey, and D. Tollervey 1994. The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J. 13: 2452–2463.
  • Iizuka, N., L. Najita, A. Franzusoff, and P. Sarnow 1994. Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 7322–7330.
  • Ingrosso, D., A. V. Fowler, J. Bleibaum, and S. Clarke 1989. Sequence of the d-aspartyl/l-isoaspartyl protein methyltransferase from human erythrocytes. J. Biol. Chem. 264: 20131–20139.
  • Jeeninga, R. E., Y. Van Delft, M. de Graaff-Vincent, A. Dirks-Mulder, J. Venema, and H. A. Raué 1997. Variable regions V13 and V3 of Saccharomyces cerevisiae contain structural features essential for normal biogenesis and stability of 5.8S and 25S rRNA. RNA 3: 476–488.
  • Kiss-László, Z., Y. Henry, J.-P. Bachellerie, M. Caizergues-Ferrer, and T. Kiss 1996. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85: 1077–1088.
  • Kranz, J. E., and C. Holm 1990. Cloning by function: an alternative approach for identifying yeast homologs of genes from other organisms. Proc. Natl. Acad. Sci. USA 87: 6629–6633.
  • Krzyzosiak, W., R. Denman, K. Nurse, W. Hellmann, M. Boublik, C. W. Gehrke, P. F. Agris, and J. Ofengand 1987. In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into functional 30S ribosomes. Biochemistry 26: 2353–2364.
  • Lafontaine, D., J. Delcour, A.-L. Glasser, J. Desgrès, and J. Vandenhaute 1994. The DIM1 gene responsible for the conserved m26Am26A dimethylation in the 3′ terminal loop of 18S rRNA is essential in yeast. J. Mol. Biol. 241: 492–497.
  • Lafontaine, D., and D. Tollervey. Unpublished data.
  • Lafontaine, D., and D. Tollervey 1995. Trans-acting factors in yeast pre-rRNA and pre-snoRNA processing. Biochem. Cell Biol. 73: 803–812.
  • Lafontaine, D., and D. Tollervey 1996. One-step PCR mediated strategy for the construction of conditionally expressed and epitope tagged yeast proteins. Nucleic Acids Res. 24: 3469–3472.
  • Lafontaine, D., J. Vandenhaute, and D. Tollervey 1995. The 18S rRNA dimethylase Dim1p is required for pre-ribosomal RNA processing in yeast. Genes Dev. 9: 2470–2481.
  • Lee, W. C., D. Zabetakis, and T. Mélèse 1992. NSR1 is required for pre-rRNA processing and for the proper maintenance of steady-state levels of ribosomal subunits. Mol. Cell. Biol. 12: 3865–3871.
  • Leung, D. W., E. Chen, and D. V. Goeddel 1989. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1: 11–15.
  • Maden, B. E. H. 1990. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 39: 241–303.
  • Morrissey, J. P., and D. Tollervey 1993. Yeast snR30 is a small nucleolar RNA required for 18S rRNA synthesis. Mol. Cell. Biol. 13: 2469–2477.
  • Ni, J., A. L. Tien, and M. J. Fournier 1997. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89: 565–573.
  • Nicoloso, M., L.-H. Qu, B. Michot, and J.-P. Bachellerie 1996. Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2′-O-ribose methylation of rRNAs. J. Mol. Biol. 260: 178–195.
  • Palmer, E., J. M. Wilhelm, and F. Sherman 1979. Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics. Nature 277: 148–150.
  • Petfalski, E., and D. Tollervey. Unpublished data.
  • Poldermans, B., H. Bakker, and P. H. van Knippenberg 1980. Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3′-end of 16S ribosomal RNA of Escherichia coli. IV. The effect of the methyl groups on ribosomal subunit interaction. Nucleic Acids Res. 8: 143–151.
  • Poldermans, B., C. P. J. J. van Buul, and P. H. van Knippenberg 1979. Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3′-end of 16S ribosomal RNA of Escherichia coli. II. The effect of the absence of the methyl groups on initiation of protein biosynthesis. J. Biol. Chem. 254: 9090–9094.
  • Salim, M., and B. E. H. Maden 1973. Early and late methylations in HeLa cell ribosome maturation. Nature 244: 334–336.
  • Sikorski, R. S., and J. D. Boeke 1991. In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol. 194: 302–318.
  • Sikorski, R. S., and P. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • Singh, A., D. Ursic, and J. Davies 1979. Phenotypic suppression and misreading in Saccharomyces cerevisiae. Nature 277: 146–148.
  • Tarun, S. Z., and A. B. Sachs 1995. A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev. 9: 2997–3007.
  • Thamana, P., and C. R. Cantor 1978. Studies on ribosome structure and interactions near the m26Am26A sequence. Nucleic Acids Res. 5: 805–823.
  • Tollervey, D. 1996. Trans-acting factors in ribosome synthesis. Exp. Cell Res. 229: 226–232.
  • van Buul, C. P. J. J., W. Visser, and P. H. van Knippenberg 1984. Increased translational fidelity caused by the antibiotic kasugamycin and ribosomal ambiguity in mutants harbouring the ksgA gene. FEBS Lett. 177: 119–124.
  • van Buul, C. P. J. J., J. B. L. Damn, and P. H. van Knippenberg 1983. Kasugamycin resistant mutants of Bacillus stearothermophilus lacking the enzyme for the methylation of two adjacent adenosines in 16S ribosomal RNA. Mol. Gen. Genet. 189: 475–478.
  • van Knippenberg, P. H. 1986. Structural and functional aspects of the N6,N6-dimethyladenosines in 16S ribosomal RNA Structure, function and genetics of ribosomes. In: Hardesty, B., and G. Kramer412–424Springer-Verlag Inc., New York, N.Y.
  • Venema, J., and D. Tollervey 1995. Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast 11: 1629–1650.
  • Venema, J., and D. Tollervey 1996. RRP5 is required for formation of both 18S and 5.8S rRNA in yeast. EMBO J. 15: 5701–5714.
  • Willcock, D. F., D. T. F. Dryden, and N. E. Murray 1994. A mutational analysis of the two motifs common to adenine methyltransferases. EMBO J. 13: 3902–3908.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.