23
Views
123
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Activation of the Small GTPase Ral in Platelets

, , , , , , & show all
Pages 2486-2491 | Received 07 Nov 1997, Accepted 01 Feb 1998, Published online: 28 Mar 2023

REFERENCES

  • Albright, C. F., B. W. Giddings, J. Liu, M. Vito, and R. A. Weinberg 1993. Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J. 12: 339–347.
  • Bhullar, R. P., P. Chardin, and R. J. Haslam 1990. Identification of multiple ral gene products in human platelets that account for some but not all of the platelet Gn-proteins. FEBS Lett. 260: 48–52.
  • Bhullar, R. P., and H. D. Seneviratne 1996. Characterization of human platelet GTPase activating protein for the Ral GTP-binding protein. Biochim. Biophys. Acta 1311: 181–188.
  • Bielinski, D. F., H. Y. Pyun, K. Linko-Stentz, I. G. Macara, and R. E. Fine 1993. Ral and Rab3a are major GTP-binding proteins of axonal rapid transport and synaptic vesicles and do not redistribute following depolarization stimulated synaptosomal exocytosis. Biochim. Biophys. Acta 1151: 246–256.
  • Cantor, S. B., T. Urano, and L. A. Feig 1995. Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Mol. Cell. Biol. 15: 4578–4584.
  • Chardin, P., and A. Tavitian 1989. Coding sequences of human ralA and ralB cDNAs. Nucleic Acids Res. 17: 4380.
  • Chardin, P., and A. Tavitian 1986. The Ral gene: a new Ras-related gene isolated by the use of a synthetic probe. EMBO J. 5: 2203–2208.
  • Coorssen, J. R. 1996. Phospholipase activation and secretion: evidence that PLA2, PLC, and PLD are not essential to exocytosis. Am. J. Physiol. 270: C1153–C1163.
  • Coorssen, J. R., H. Schmitt, and W. Almers 1996. Ca2+ triggers massive exocytosis in Chinese hamster ovary cells. EMBO J. 15: 3787–3791.
  • D’Adamo, D. R., S. Novick, J. M. Kahn, P. Leonardi, and A. Pellicer 1997. Rsc: a novel oncogene with structural and functional homology with the gene family of exchange factors for Ral. Oncogene 14: 1295–1305.
  • Dash, D., M. Aepfelbacher, and W. Siess 1995. The association of pp125FAK, pp60Src, CDC42Hs and Rap1B with the cytoskeleton of aggregated platelets is a reversible process regulated by calcium. FEBS Lett. 363: 231–234.
  • de Rooij, J., and J. L. Bos 1997. Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14: 623–625.
  • Emkey, R., S. Freedman, and L. A. Feig 1991. Characterization of a GTPase-activating protein for the Ras-related Ral protein. J. Biol. Chem. 266: 9703–9706.
  • Exton, J. H. 1997. New developments in phospholipase D. J. Biol. Chem. 272: 15579–15582.
  • Farnsworth, C. L., N. W. Freshney, L. B. Rosen, A. Ghosh, M. E. Greenberg, and L. A. Feig 1995. Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature 376: 524–527.
  • Feig, L. A., and R. Emkey 1993. Ral gene products and their regulation The ras superfamily of GTPases. In: Lacal, J. C., and F. McCormick247–258CRC Press, London, England.
  • Feig, L. A., T. Urano, and S. Cantor 1996. Evidence for a Ras/Ral signaling cascade. Trends Biochem. Sci. 21: 438–441.
  • Franke, B., J. W. N. Akkerman, and J. L. Bos 1997. Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J. 16: 252–259.
  • Frech, M., I. Schlichting, A. Wittinghofer, and P. Chardin 1990. Guanine nucleotide binding properties of the mammalian RalA protein produced in Escherichia coli. J. Biol. Chem. 265: 6353–6359.
  • Haslam, R. J., and J. R. Coorssen 1993. Evidence that activation of phospholipase D can mediate secretion from permeabilized platelets. Adv. Exp. Med. Biol. 344: 149–164.
  • Jiang, H., J. Q. Luo, T. Urano, P. Frankel, Z. Lu, D. A. Foster, and L. A. Feig 1995. Involvement of Ral GTPase in v-Src-induced phospholipase D activation. Nature 378: 409–412.
  • Jullien-Flores, V., O. Dorseuil, F. Romero, F. Letourneur, S. Saragosti, R. Berger, A. Tavitian, G. Gacon, and J. H. Camonis 1995. Bridging Ral GTPase to Rho pathways. RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity. J. Biol. Chem. 270: 22473–22477.
  • Kikuchi, A., S. D. Demo, Z.-H. Ye, Y.-W. Chen, and L. T. Williams 1994. ralGDS family members interact with the effector loop of ras p21. Mol. Cell. Biol. 14: 7483–7491.
  • Kishida, S., S. Koyama, K. Matsubara, M. Kishida, Y. Matsuura, and A. Kikuchi 1997. Colocalization of Ras and Ral on the membrane is required for Ras-dependent Ral activation through Ral GDP dissociation stimulator. Oncogene 15: 2899–2907.
  • Knight, D. E., V. Niggli, and M. C. Scrutton 1984. Thrombin and activators of protein kinase C modulate secretory responses of permeabilised human platelets induced by Ca2+. Eur. J. Biochem. 143: 437–446.
  • Kroll, M. H., and A. I. Schafer 1989. Biochemical mechanisms of platelet activation. Blood 74: 1181–1195.
  • Lopez-Barahona, M., X. R. Bustelo, and M. Barbacid 1996. The TC21 oncoprotein interacts with the Ral guanosine nucleotide dissociation factor. Oncogene 12: 463–470.
  • Luo, J. Q., X. Liu, S. M. Hammond, W. C. Colley, L. A. Feig, M. A. Frohman, A. J. Morris, and D. A. Foster 1997. RalA interacts directly with the Arf-responsive, PIP2-dependent phospholipase D1. Biochem. Biophys. Res. Commun. 235: 854–859.
  • Mark, B. L., O. Jilkina, and R. P. Bhullar 1996. Association of Ral GTP-binding protein with human platelet dense granules. Biochem. Biophys. Res. Commun. 225: 40–46.
  • Martinson, E. A., S. Scheible, A. Greinacher, and P. Presek 1995. Platelet phospholipase D is activated by protein kinase C via an integrin alpha IIb beta 3-independent mechanism. Biochem. J. 310: 623–628.
  • Moolenaar, W. H., O. Kranenburg, F. R. Postma, and G. C. Zondag 1997. Lysophosphatidic acid: G-protein signalling and cellular responses. Curr. Opin. Cell Biol. 9: 168–173.
  • Morgan, C. P., H. Sengelov, J. Whatmore, N. Borregaard, and S. Cockcroft 1997. ADP-ribosylation-factor-regulated phospholipase D activity localizes to secretory vesicles and mobilizes to the plasma membrane following N-formymethionyl-leucyl-phenylalanine stimulation of human neutrophils. Biochem. J. 325: 581–585.
  • Morgenstern, E. 1995. The formation of compound granules from different types of secretory organelles in human platelets (dense granules and alpha-granules). A cryofixation/-substitution study using serial sections. Eur. J. Cell Biol. 68: 183–190.
  • Murai, H., M. Ikeda, S. Kishida, O. Ishida, M. Okazaki-Kishida, Y. Matsuura, and A. Kikuchi 1997. Characterization of Ral GDP dissociation stimulator-like (RGL) activities to regulate c-fos promoter and the GDP/GTP exchange of Ral. J. Biol. Chem. 272: 10483–10490.
  • Neer, E. J. 1995. Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80: 249–257.
  • Ngsee, J. K., L. A. Elferink, and R. H. Scheller 1991. A family of ras-like GTP-binding proteins expressed in electromotor neurons. J. Biol. Chem. 266: 2675–2680.
  • Offermans, S., C. F. Toombs, Y.-H. Hu, and M. I. Simon 1997. Defective platelet activation in Gαq-deficient mice. Nature 389: 183–186.
  • Okazaki, M., S. Kishida, T. Hinoi, T. Hasegawa, M. Tamada, T. Kataoka, and A. Kikuchi 1997. Synergistic activation of c-fos promoter activity by Raf and Ral GDP dissociation stimulator. Oncogene 14: 515–521.
  • Olofsson, B., P. Chardin, N. Touchot, A. Zahraoui, and A. Tavitian 1988. Expression of the ras-related ralA, rho12 and rab genes in adult mouse tissues. Oncogene 3: 231–234.
  • Park, S. H., and R. A. Weinberg 1995. A putative effector of Ral has homology to Rho/Rac GTPase activating proteins. Oncogene 11: 2349–2355.
  • Polakis, P. G., R. F. Weber, B. Nevins, J. R. Didsbury, T. Evans, and R. Snyderman 1989. Identification of the ral and rac1 gene products, low molecular mass GTP-binding proteins from human platelets. J. Biol. Chem. 264: 16383–16389.
  • Shock, D. D., K. He, D. J. Wencel, and L. V. Parise 1997. Ras activation in platelets after stimulation of the thrombin receptor, thromboxane A2 receptor or protein kinase C. Biochem. J. 321: 525–530.
  • Siess, W. 1989. Molecular mechanisms of platelet activation. Physiol. Rev. 69: 58–178.
  • Spaargaren, M., and J. R. Bischoff 1994. Identification of the guanine nucleotide dissociation stimulator for Ral as a putative effector molecule of R-ras, H-ras, K-ras and Rap. Proc. Natl. Acad. Sci. USA 91: 12609–12613.
  • Symons, M., J. M. Derry, B. Karlak, S. Jiang, V. Lemahieu, F. McCormick, U. Francke, and A. Abo 1996. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84: 723–734.
  • Torti, M., and E. G. Lapetina 1994. Structure and function of rap proteins in human platelets. Thromb. Haemostasis 71: 533–543.
  • Toullec, D., P. Pianetti, H. Coste, P. Bellevergue, T. Grand-Perret, M. Ajakane, V. Baudet, P. Boissin, E. Boursier, F. Loriolle, et al. 1991. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J. Biol. Chem. 266: 15771–15781.
  • Urano, T., R. Emkey, and L. A. Feig 1996. Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates transformation. EMBO J. 15: 810–816.
  • van Willigen, G., I. Hers, G. G. Gorter, and J. W. N. Akkerman 1996. Exposure of ligand-binding sites on platelet integrin alphaII-beta3 by phosphorylation of the beta3 subunit. Biochem. J. 314: 769–779.
  • Volknandt, W., J. Pevsner, L. A. Elferink, and R. H. Scheller 1993. Association of three small GTP-binding proteins with cholinergic synaptic vesicles. FEBS Lett. 317: 53–56.
  • Wang, K. L., M. T. Khan, and B. D. Roufogalis 1997. Identification and characterization of a calmodulin-binding domain in Ral-A, a Ras-related GTP-binding protein purified from human erythrocyte membrane. J. Biol. Chem. 272: 16002–16009.
  • Wolthuis, R. M. F., B. Bauer, L. J. van’t Veer, A. M. M. de Vries-Smits, R. H. Cool, M. Spaargaren, A. Wittinghofer, B. M. T. Burgering, and J. L. Bos 1996. RalGDS-like factor (Rlf) is a novel Ras and Rap 1A-associating protein. Oncogene 13: 353–362.
  • Wolthuis, R. M. F., N. D. de Ruiter, R. H. Cool, and J. L. Bos 1997. Stimulation of gene induction and cell growth by the Ras effector Rlf. EMBO J. 22: 6748–6761.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.