8
Views
38
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Regulation of Cell Size by Glucose Is Exerted via Repression of the CLN1 Promoter

, , , &
Pages 2492-2501 | Received 12 Dec 1997, Accepted 04 Feb 1998, Published online: 28 Mar 2023

REFERENCES

  • Baroni, M. D., E. Martegani, P. Monti, and L. Alberghina 1989. Cell size modulation by CDC25 and RAS2 genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 2715–2723.
  • Baroni, M. D., P. Monti, and L. Alberghina 1994. Repression of growth-regulated G1 cyclin expression by cyclic AMP in budding yeast. Nature 371: 339–342.
  • Baroni, M. D., P. Monti, G. Marconi, and L. Alberghina 1992. cAMP-mediated increase in the critical cell size required for the G1 to S transition in Saccharomyces cerevisiae. Exp. Cell Res. 201: 299–306.
  • Beullens, M., K. Mbonyi, L. Geerts, D. Gladines, K. Detremerie, A. W. H. Jans, and J. M. Thevelein 1988. Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 172: 227–231.
  • Breeden, L. 1996. Start specific transcription in yeast. Curr. Top. Microbiol. Immunol. 208: 95–127.
  • Buchman, A. R., and R. D. Kornberg 1990. A yeast ars-binding protein activates transcription synergistically in combination with other weak activating factors. Mol. Cell. Biol. 10: 887–897.
  • Chapman-Shimshoni, D. Unpublished data.
  • Cross, F. 1988. DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 4675–4684.
  • Cross, F. R., M. Hoek, J. D. McKinney, and A. H. Tinkelenberg 1994. Role of Swi4 in cell cycle regulation of CLN2 expression. Mol. Cell. Biol. 14: 4779–4787.
  • Cross, F. R., and A. H. Tinkelenberg 1991. A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65: 875–883.
  • Deshaies, R. J., V. Chau, and M. Kirschner 1995. Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway. EMBO J. 14: 303–312.
  • Dirick, L., T. Böhm, and K. Nasmyth 1995. Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae. EMBO J. 14: 4803–4813.
  • Dirick, L., and K. Nasmyth 1991. Positive feedback in the activation of G1 cyclins in yeast. Nature 351: 754–757.
  • Flick, K., and C. Wittenberg. Unpublished data.
  • Hadwiger, J. A., C. Wittenberg, M. A. de Barros Lopes, H. E. Richardson, and S. I. Reed 1989. A family of cyclin homologs that control G1 phase in yeast. Proc. Natl. Acad. Sci. USA 86: 6255–6259.
  • Heideman, W. Personal communication.
  • Johnston, G. C., C. W. Ehrhardt, A. Lörincz, and B. L. A. Carter 1979. Regulation of cell size in the yeast Saccharomyces cerevisiae. J. Bacteriol. 137: 1–5.
  • Lanker, S., M. H. Valdivieso, and C. Wittenberg 1996. Rapid degradation of the G1 cyclin, Cln2, induced by CDK-dependent phosphorylation. Science 271: 1597–1601.
  • Lörincz, A. T., and B. L. A. Carter 1979. Control of cell size at bud initiation in Saccharomyces cerevisiae. J. Gen. Microbiol. 113: 287–295.
  • Mai, B., and L. Breeden 1997. Xbp1, a stress-induced transcriptional repressor of the Saccharomyces cerevisiae Swi4/Mbp1 family. Mol. Cell. Biol. 17: 6491–6501.
  • Nash, R., G. Tokiwa, S. Anand, K. Erickson, and A. B. Futcher 1988. The WHI1+ gene of S. cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J. 7: 4335–4346.
  • Nasmyth, K., and L. Dirick 1991. The role of SWI4 and SWI6 in the activity of the G1 cyclins in yeast. Cell 66: 995–1013.
  • Ogas, J., B. Andrews, and I. Herskowitz 1991. Transcriptional activation of CLN1, CLN2, and a putative new G1 cyclin (HCS26) by SWI4, a positive regulator of G1-specific transcription. Cell 66: 1015–1026.
  • Partridge, J. F., G. E. Mikesell, and L. L. Breeden 1997. Cell cycle-dependent transcription of CLN1 involves Swi4 binding to MCB-like elements. J. Biol. Chem. 272: 9071–9077.
  • Polymenis, M., and E. V. Schmidt 1997. Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev. 11: 2522–2531.
  • Reed, S. 1995. START and the G1-S phase transition in budding yeast Cell cycle control. In: Barnes, B. D., and D. M. Glover40–62IRL Press, Oxford, England.
  • Richardson, H. E., C. Wittenberg, F. R. Cross, and S. I. Reed 1989. An essential G1 function for cyclin-like proteins in yeast. Cell 59: 1127–1133.
  • Ronne, H. 1995. Glucose repression in fungi. Trends Genet. 11: 12–17.
  • Russell, M., J. Bradshaw-Rouse, D. Markwardt, and W. Heideman 1993. Changes in gene expression in the Ras/adenylate cyclase system of Saccharomyces cerevisiae: correlation with cAMP levels and growth arrest. Mol. Biol. Cell 4: 757–765.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Stuart, D. Unpublished data.
  • Stuart, D., and C. Wittenberg 1994. Cell cycle-dependent transcription of CLN2 is conferred by multiple distinct cis-acting regulatory elements. Mol. Cell. Biol. 14: 4788–4801.
  • Stuart, D., and C. Wittenberg 1995. CLN3, not positive feedback, determines the timing of CLN2 gene expression in cycling cells. Genes Dev. 9: 2780–2794.
  • Thevelein, J. M. 1992. The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae. Antonie Leeuwenhoek 62: 109–130.
  • Thevelein, J. M., and M. Beullens 1985. Cyclic AMP and the stimulation of trehalase activity in the yeast Saccharomyces cerevisiae by carbon sources, nitrogen sources and inhibitors of protein synthesis. J. Gen. Microbiol. 131: 3199–3209.
  • Tokiwa, G., M. Tyers, T. Volpe, and B. Futcher 1994. Inhibition of G1 cyclin activity by the Ras/cAMP pathway in yeast. Nature 371: 342–345.
  • Tyers, M., G. Tokiwa, and B. Futcher 1993. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12: 1955–1968.
  • Valdivieso, M. H., K. Sugimoto, K.-Y. Jahng, P. M. B. Fernandes, and C. Wittenberg 1993. FAR1 is required for posttranscriptional regulation of CLN2 gene expression in response to mating pheromone. Mol. Cell. Biol. 13: 1013–1022.
  • Willems, A. R., S. Lanker, E. E. Patton, K. L. Craig, T. F. Nasson, N. Mathias, R. Kobayashi, C. Wittenberg, and M. Tyers 1996. Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell 86: 453–463.
  • Wittenberg, C., K. Sugimoto, and S. I. Reed 1990. G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell 62: 225–237.
  • Yaglom, J., M. H. Linskens, S. Sadis, D. M. Rubin, B. Futcher, and D. Finley 1995. p34Cdc28-mediated control of Cln3 cyclin degradation. Mol. Cell. Biol. 15: 731–741.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.