3
Views
50
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Posttranslational Regulation of Ty1 Retrotransposition by Mitogen-Activated Protein Kinase Fus3

, , , &
Pages 2502-2513 | Received 21 Oct 1997, Accepted 27 Jan 1998, Published online: 28 Mar 2023

REFERENCES

  • Alani, E., L. Cao, and N. Kleckner 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116: 541–545.
  • Bardwell, L., J. G. Cook, E. C. Chang, B. R. Cairns, and J. Thorner 1996. Signaling in the yeast pheromone response pathway: specific and high-affinity interaction of the mitogen-activated protein (MAP) kinases Kss1 and Fus3 with the upstream MAP kinase kinase Ste7. Mol. Cell. Biol. 16: 3637–3650.
  • Baur, M., R. K. Esch, and B. Errede 1997. Cooperative binding interactions required for function of the Ty1 sterile responsive element. Mol. Cell. Biol. 17: 4330–4337.
  • Best, S., P. Letissier, G. Towers, and J. P. Stoye 1996. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382: 826–829.
  • Boeke, J. D., and V. G. Corces 1989. Transcription and reverse transcription of retrotransposons. Annu. Rev. Microbiol. 43: 403–434.
  • Boeke, J. D., D. Eichinger, D. Castrillon, and G. R. Fink 1988. The Saccharomyces cerevisiae genome contains functional and nonfunctional copies of transposon Ty1. Mol. Cell. Biol. 8: 1432–1442.
  • Boeke, J. D., D. J. Eichinger, and G. Natsoulis 1991. Doubling Ty1 element copy number in Saccharomyces cerevisiae: host genome stability and phenotypic effects. Genetics 129: 1043–1052.
  • Boeke, J. D., and S. B. Sandmeyer Yeast transposable elements The molecular and cellular biology of the yeast Saccharomyces In: Broach, J. R., J. Pringle, and E. Jones11991193–262Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Braiterman, L. T., G. M. Monokian, D. J. Eichinger, S. L. Merbs, A. Gabriel, and J. D. Boeke 1994. In-frame linker insertion mutagenesis of yeast transposon Ty1: phenotypic analysis. Gene 139: 19–26.
  • Chang, F., and I. Herskowitz 1990. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63: 999–1011.
  • Chapman, K. B., A. S. Bystrom, and J. D. Boeke 1992. Initiator methionine tRNA is essential for Ty1 transposition in yeast. Proc. Natl. Acad. Sci. USA 89: 3236–3240.
  • Choi, K. Y., B. Satterberg, D. M. Lyons, and E. A. Elion 1994. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78: 499–512.
  • Cook, J. G., L. Bardwell, and J. Thorner 1997. Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature 360: 85–88.
  • Curcio, M. J. Unpublished results.
  • Curcio, M. J., and D. J. Garfinkel 1994. Heterogeneous functional Ty1 elements are abundant in the Saccharomyces cerevisiae genome. Genetics 136: 1245–1259.
  • Curcio, M. J., and D. J. Garfinkel 1992. Posttranslational control of Ty1 retrotransposition occurs at the level of protein processing. Mol. Cell. Biol. 12: 2813–2825.
  • Curcio, M. J., and D. J. Garfinkel 1991. Single-step selection for Ty1 element retrotransposition. Proc. Natl. Acad. Sci. USA 88: 936–940.
  • Curcio, M. J., and D. J. Garfinkel. Unpublished results.
  • Curcio, M. J., A. M. Hedge, J. D. Boeke, and D. J. Garfinkel 1990. Ty RNA levels determine the spectrum of retrotransposition events that activate gene expression in Saccharomyces cerevisiae. Mol. Gen. Genet. 220: 213–221.
  • Curcio, M. J., N. J. Sanders, and D. J. Garfinkel 1988. Transpositional competence and transcription of endogenous Ty elements in Saccharomyces cerevisiae: implications for regulation of transposition. Mol. Cell. Biol. 8: 3571–3581.
  • Dalgaard, J. Z., M. Banerjee, and M. J. Curcio 1996. A novel Ty1-mediated fragmentation method for native and artificial yeast chromosomes reveals that the mouse Steel gene is a hotspot for Ty1 integration. Genetics 143: 673–683.
  • Dubois, E., E. Jacobs, and J.-C. Jauniaux 1982. Expression of the ROAM mutations in Saccharomyces cerevisiae: involvement of trans-acting regulatory elements and relation with the Ty1 transcription. EMBO J. 1: 1133–1139.
  • Eichinger, D. J., and J. D. Boeke 1988. The DNA intermediate in yeast Ty1 element transposition copurifies with virus-like particles: cell-free Ty1 transposition. Cell 54: 955–966.
  • Elion, E. A., J. A. Brill, and G. R. Fink 1991. Functional redundancy in the yeast cell cycle: FUS3 and KSS1 have both overlapping and unique functions. Cold Spring Harbor Symp. Quant. Biol. 56: 41–49.
  • Elion, E. A., P. L. Grisafi, and G. R. Fink 1990. FUS3 encodes a cdc2+/CDC28− related kinase required for the transition from mitosis into conjugation. Cell 60: 649–664.
  • Elion, E. A., B. Satterberg, and J. E. Kranz 1993. FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1. Mol. Biol. Cell 4: 495–510.
  • Errede, B., and G. Ammerer 1989. STE12, a protein involved in cell-type-specific transcription and signal transduction in yeast, is part of protein-DNA complexes. Genes Dev. 3: 1349–1361.
  • Errede, B., T. S. Cardillo, F. Sherman, E. Dubois, J. Deschamps, and J. M. Wiame 1980. Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genes. Cell 22: 427–436.
  • Errede, B., A. Gartner, Z. Zhou, K. Nasmyth, and G. Ammerer 1993. MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro. Nature 362: 261–264.
  • Farabaugh, P. J. 1995. Post-transcriptional regulation of transposition by Ty retrotransposons of Saccharomyces cerevisiae. J. Biol. Chem. 270: 10361–10364.
  • Fink, G. R., and C. A. Styles 1972. Curing of a killer factor in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 69: 2846–2849.
  • Garfinkel, D. J., J. D. Boeke, and G. R. Fink 1985. Ty element transposition: reverse transcriptase and virus-like particles. Cell 42: 507–517.
  • Garfinkel, D. J., A. M. Hedge, S. D. Youngren, and T. D. Copeland 1991. Proteolytic processing of pol-TYB proteins from the yeast retrotransposon Ty1. J. Virol. 65: 4573–4581.
  • Gartner, A., K. Nasmyth, and G. Ammerer 1992. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev. 6: 1280–1292.
  • Hall, J. P., V. Cherkasova, E. Elion, M. C. Gustin, and E. Winter 1996. The osmoregulatory pathway represses mating pathway activity in Saccharomyces cerevisiae: isolation of a FUS3 mutant that is insensitive to the repression mechanism. Mol. Cell. Biol. 16: 6715–6723.
  • Ji, H., D. P. Moore, M. A. Blomberg, L. T. Braiterman, D. F. Voytas, G. Natsoulis, and J. D. Boeke 1993. Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73: 1007–1018.
  • Kawakami, K., S. Pande, B. Faiola, D. P. Moore, J. D. Boeke, P. J. Farabaugh, J. N. Strathern, Y. Nakamura, and D. J. Garfinkel 1993. A rare tRNA-Arg(CCU) that regulates Ty1 element ribosomal frameshifting is essential for Ty1 retrotransposition in Saccharomyces cerevisiae. Genetics 135: 309–320.
  • Lea, D. E., and C. A. Coulson 1949. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49: 264–285.
  • Leberer, E., D. Dignard, D. Harcus, D. Y. Thomas, and M. Whiteway 1992. The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein beta gamma subunits to downstream signalling components. EMBO J. 11: 4815–4824.
  • Madhani, H. D., and G. R. Fink 1997. Combinatorial control required for the specificity of yeast MAPK signaling. Science 275: 1314–1317.
  • Madhani, H. D., C. A. Styles, and G. R. Fink 1997. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91: 673–684.
  • Mellor, J., A. M. Fulton, M. J. Dobson, N. A. Roberts, W. Wilson, A. J. Kingsman, and S. M. Kingsman 1985. The Ty transposon of Saccharomyces cerevisiae determines the synthesis of at least three proteins. Nucleic Acids Res. 13: 6249–6263.
  • Mosch, H. U., R. L. Roberts, and G. R. Fink 1996. Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93: 5352–5356.
  • Neiman, A. M., and I. Herskowitz 1994. Reconstitution of a yeast protein kinase cascade in vitro: activation of the yeast MEK homologue STE7 by STE11. Proc. Natl. Acad. Sci. USA 91: 3398–3402.
  • Nouvel, P. 1994. The mammalian genome shaping activity of reverse transcriptase. Genetica 93: 191–201.
  • Peter, M., and I. Herskowitz 1994. Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science 265: 1228–1231.
  • Petrov, D. A., J. L. Schutzman, D. L. Hartl, and E. R. Lozovskaya 1995. Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc. Natl. Acad. Sci. USA 92: 8050–8054.
  • Roberts, R. L., and G. R. Fink 1994. Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 8: 2974–2985.
  • Rose, M. D., F. Winston, and P. Hieter 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sandmeyer, S. B. 1992. Yeast retrotransposons. Curr. Opin. Genet. Dev. 2: 705–711.
  • Sharon, G., T. J. Burkett, and D. J. Garfinkel 1994. Efficient homologous recombination of Ty1 element cDNA when integration is blocked. Mol. Cell. Biol. 14: 6540–6551.
  • Sprague, G. F., and J. W. Thorner Pheromone response and signal transduction during the mating process of Saccharomyces cerevisiae The molecular and cellular biology of the yeast Saccharomyces In: Jones, E. W., J. R. Pringle, and J. R. Broach21992657–744Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Wilke, C. M., and J. Adams 1992. Fitness effects of Ty transposition in Saccharomyces cerevisiae. Genetics 131: 31–42.
  • Winston, F., K. J. Durbin, and G. R. Fink 1984. The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell 39: 675–682.
  • Wright, A. P., M. Bruns, and B. S. Hartley 1989. Extraction and rapid inactivation of proteins from Saccharomyces cerevisiae by trichloroacetic acid precipitation. Yeast 5: 51–53.
  • Xu, H., and J. D. Boeke 1991. Inhibition of Ty1 transposition by mating pheromones in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 2736–2743.
  • Youngren, S. D., J. D. Boeke, N. J. Sanders, and D. J. Garfinkel 1988. Functional organization of the retrotransposon Ty from Saccharomyces cerevisiae: Ty protease is required for transposition. Mol. Cell. Biol. 8: 1421–1431.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.