16
Views
124
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Nuclear Localization of IκBα Is Mediated by the Second Ankyrin Repeat: the IκBα Ankyrin Repeats Define a Novel Class of cis-Acting Nuclear Import Sequences

, &
Pages 2524-2534 | Received 10 Oct 1997, Accepted 20 Feb 1998, Published online: 28 Mar 2023

REFERENCES

  • Arenzana-Seisdedos, F., J. Thompson, M. S. Rodriguez, F. Bachelerie, D. Thomas, and R. T. Hay 1995. Inducible nuclear expression of newly synthesized IκBα negatively regulates DNA-binding and transcriptional activities of NF-κB. Mol. Cell. Biol. 15: 2689–2696.
  • Arenzana-Seisdedos, F., P. Turpin, M. Rodriguez, D. Thomas, R. T. Hay, J.-L. Virelizier, and C. Dargemont 1997. Nuclear localization of IκBα promotes active transport of NF-κB from the nucleus to the cytoplasm. J. Cell Sci. 110: 369–378.
  • Baldwin, A. S.Jr. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14: 649–681.
  • Beg, A. A., S. M. Ruben, R. I. Scheinman, S. Haskill, C. A. Rosen, Baldwin A. S., Jr. 1992. IκB interacts with the nuclear localization sequences of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev. 6: 1899–1913.
  • Beg, A. A., Baldwin, A. S.Jr. 1993. The IκB proteins: multifunctional regulators of Rel/NF-κB in the immune system. Genes Dev. 7: 2064–2070.
  • Beg, A. A., W. C. Sha, R. T. Bronson, and D. Baltimore 1995. Constitutive NF-κB activation, enhanced granulopoiesis, and neonatal lethality in IκBα deficient mice. Genes Dev. 9: 2736–2746.
  • Beg, A. A., W. C. Sha, R. T. Bronson, S. Ghosh, and D. Baltimore 1995. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature (London) 376: 167–170.
  • Bours, V., G. Franzoso, V. Azarenko, S. Park, T. Kanno, K. Brown, and U. Siebenlist 1993. The oncoprotein Bcl-3 directly transactivates through kappa-B motifs via association with DNA-binding p50B homodimers. Cell 72: 729–739.
  • Brockman, J. A., D. C. Scherer, T. A. McKinsey, S. M. Hall, X. Qi, W. Y. Lee, and D. W. Ballard 1995. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15: 2809–2818.
  • Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and U. Siebenlist 1995. Control of IκBα proteolysis by site-specific, signal-induced phosphorylation. Science 267: 1485–1488.
  • Capobianco, A. J., D. L. Simmons, and T. D. Gilmore 1990. Cloning and expression of a chicken c-Rel cDNA: unlike p59v-rel, p68c-rel is a cytoplasmic protein in chicken embryo fibroblasts. Oncogene 5: 257–266.
  • Chi, N., E. Adam, and S. Adam 1995. Sequence and characterization of cytoplasmic nuclear import factor p97. J. Cell Biol. 130: 265–274.
  • Cressman, D. E., and R. Taub 1993. IκBα can localize in the nucleus but shows no direct transactivation potential. Oncogene 8: 2567–2573.
  • Davis, N., S. Ghosh, D. L. Simmons, P. Tempst, H. C. Liou, D. Baltimore, Bose H. R., Jr. 1991. Rel-associated pp40: an inhibitor of the Rel family of transcription factors. Science 253: 1268–1271.
  • DiDonato, J. A., F. Mercurio, C. Rosette, J. Wu-Li, H. Suyang, S. Ghosh, and M. Karin 1996. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16: 1295–1304.
  • DiDonato, J. A., M. Hayakawa, D. M. Rothwarf, E. Zandi, and M. Karin 1997. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature (London) 388: 548–554.
  • Dougherty, J. P., and H. M. Temin 1986. High mutation rate of a spleen necrosis virus-based retrovirus vector. Mol. Cell. Biol. 6: 4387–4395.
  • Ellisen, L. W., J. Bird, D. C. West, A. L. Soreng, T. C. Reynolds, S. D. Smith, and J. Sklar 1991. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66: 649–661.
  • Enenkel, C., G. Blobel, and M. Rexach 1995. Identification of a yeast karyopherin heterodimer that targets import substrate to mammalian nuclear pore complexes. J. Biol. Chem. 270: 16499–16502.
  • Ernst, M. K., L. L. Dunn, and N. R. Rice 1995. The PEST-like sequence of IκBα is responsible for inhibition of DNA binding but not for cytoplasmic retention of c-Rel or RelA homodimers. Mol. Cell. Biol. 15: 872–883.
  • Fischer, U., J. Huber, W. C. Boelens, I. W. Mattaj, and R. Luhrmann 1995. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82: 475–484.
  • Fornerod, M., M. Ohno, M. Yoshida, and I. W. Mattaj 1997. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90: 1051–1060.
  • Franzoso, G., V. Bours, S. Park, M. Tomita-Yamaguchi, K. Kelly, and U. Siebenlist 1992. The candidate oncoprotein Bcl-3 is an antagonist of p50/NF-kappa B-mediated inhibition. Nature (London) 359: 339–342.
  • Fritz, C. C., and M. R. Green 1996. HIV Rev uses a conserved cellular protein export pathway for nucleocytoplasmic transport of viral RNAs. Curr. Biol. 6: 848–854.
  • Fukuda, M., S. Asano, T. Nakamura, M. Adachi, M. Yoshida, M. Yanagida, and E. Nishida 1997. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature (London) 390: 308–311.
  • Ganchi, P. A., S. C. Sun, W. C. Greene, and D. W. Ballard 1992. IκBα/MAD-3 masks the nuclear localization signal of NF-κB p65 and requires the transactivation domain to inhibit NF-κB p65 DNA binding. Mol. Biol. Cell. 3: 1339–1352.
  • Geisler, R., A. Bergmann, Y. Hiromi, and C. Nusslein-Volhard 1992. cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the IκB gene family of vertebrates. Cell 71: 613–621.
  • Gilmore, T. D., and H. M. Temin 1986. Different localization of the product of the v-rel oncogene in chicken fibroblasts and spleen cells correlates with transformation by REV-T. Cell 44: 791–800.
  • Gilmore, T. D., and H. M. Temin 1988. v-Rel oncoproteins in the nucleus and in the cytoplasm transform chicken spleen cells. J. Virol. 62: 703–714.
  • Gilmore, T. D., M. Koedood, K. A. Piffat, and D. W. White 1996. Rel/NF-κB/IκB proteins and cancer. Oncogene 13: 1367–1378.
  • Goldfarb, D. S., J. Gariepy, G. Schoolnik, and R. D. Kornberg 1986. Synthetic peptides as nuclear localization signals. Nature (London) 322: 641–644.
  • Gorina, S., and N. P. Pavletich 1996. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274: 1001–1005.
  • Görlich, D., S. Prehn, R. A. Laskey, and E. Hartmann 1994. Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79: 767–778.
  • Görlich, D., S. Kostka, R. Kraft, C. Dingwall, R. Laskey, E. Hartmann, and S. Prehn 1995. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr. Biol. 5: 383–392.
  • Görlich, D., G. Vogel, A. Mills, E. Hartmann, and R. Laskey 1995. Distinct functions for the two importin subunits in nuclear protein import. Nature (London) 377: 246–248.
  • Görlich, D., and I. W. Mattaj 1996. Nucleocytoplasmic transport. Science 271: 1513–1518.
  • Görlich, D., N. Pante, U. Kutay, U. Aebi, and F. R. Bischoff 1996. Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J. 15: 5584–5594.
  • Guan, E., J. Wang, J. Laborda, M. Norcross, P. A. Baeuerle, and T. Hoffman 1996. T cell leukemia-associated Notch/Translocation-associated Notch homologue has IκB-like activity and physically interacts with Nuclear Factor-κB proteins in T cells. J. Exp. Med. 183: 2025–2032.
  • Haskill, S., A. A. Beg, S. M. Thompkins, J. S. Morris, A. D. Yurochko, A. Sampson-Johannes, K. Mondal, P. Ralph, Baldwin A. S., Jr. 1991. Characterization of an immediate-early gene induced in adherent monocytes that encodes IκB-like activity. Cell 65: 1281–1289.
  • Imamoto, N., T. Shimamoto, T. Takao, T. Tachibana, S. Kose, M. Matsubae, T. Sekimoto, Y. Shimonishi, and Y. Yoneda 1995. In vivo evidence for involvement of a 58 kDa component of nuclear pore targeting complex in nuclear protein import. EMBO J. 14: 3617–3626.
  • Inoue, J. I., L. D. Kerr, D. Rashid, N. Davis, Bose H. R., Jr., and I. M. Verma 1992. Direct association of pp40/IκB-β with Rel/NF-κB transcription factors: Role of ankyrin repeats in the inhibition of DNA binding activity. Proc. Natl. Acad. Sci. USA 89: 4333–4337.
  • Ito, C. Y., A. G. Kazantsev, Baldwin A. S., Jr. 1994. Three NF-κB sites in the IκBα promoter are required for induction of gene expression by TNF-α. Nucleic Acids Res. 22: 3787–3792.
  • Kalderon, D., B. L. Roberts, W. D. Richardson, and A. E. Smith 1984. A short amino acid sequence able to specify nuclear location. Cell 39: 499–509.
  • La Marco, K., C. C. Thompson, B. P. Byers, E. M. Walton, and S. L. McKnight 1991. Identification of Ets- and notch-related subunits in GA binding protein. Science 253: 789–792.
  • Le Bail, O., R. Schmidt-Ulrich, and A. Israel 1993. Promoter analysis of the gene encoding the IκBα/MAD-3 inhibitor of NF-κB: positive regulation by members of the Rel/NF-κB family. EMBO J. 12: 5043–5049.
  • Li, Z., and G. J. Nabel 1997. A new member of the IκB protein family, IκBɛ, inhibits RelA (p65)-mediated NF-κB transcription. Mol. Cell. Biol. 17: 6184–6190.
  • Liou, H. C., G. P. Nolan, S. Ghosh, T. Fujita, and D. Baltimore 1992. The NF-kappa B precursor, p105, contains an internal I kappa B-like inhibitor that preferentially inhibits p50. EMBO J. 11: 3003–3009.
  • Mercurio, F., H. Zhu, B. W. Murray, A. Shevchenko, B. L. Bennett, J. Li, D. B. Young, M. Barbosa, M. Mann, A. Manning, and A. Rao 1997. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278: 860–866.
  • Michael, W. M., M. Choi, and G. Dreyfuss 1995. A nuclear export signal in hnRNP A1: a signal-mediated temperature-dependent nuclear protein export pathway. Cell 83: 415–422.
  • Morin, P. J., and T. D. Gilmore 1992. The C-terminus of the NF-κB p50 precursor and an IκB isoform contain transcription activation domains. Nucleic Acids Res. 20: 2453–2458.
  • Moroianu, J., G. Blobel, and A. Radu 1995. Previously identified protein of uncertain function is karyopherin α and together with karyopherin β docks import substrate at the nuclear pore complex. Proc. Natl. Acad. Sci. USA 92: 2008–2011.
  • Moroianu, J., M. Hijikata, G. Blobel, and A. Radu 1995. Mammalian karyopherin α1β and α2β heterodimers: α1 or α2 bind nuclear localization signal and β interacts with peptide repeat containing nucleoporins. Proc. Natl. Acad. Sci. USA 92: 6532–6536.
  • Naumovski, L., and M. L. Cleary 1996. The p53-binding protein 53BP2 also interacts with Bcl2 and impedes cell cycle progression at G2/M. Mol. Cell. Biol. 16: 3884–3892.
  • Nigg, E. A. 1997. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature (London) 386: 779–787.
  • Ohno, H., G. Takimoto, and T. W. McKeithan 1990. The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell 60: 991–997.
  • Ossareh-Nazari, B., F. Bachelerie, and C. Dargemont 1997. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278: 141–144.
  • Phillips, R. J., and S. Ghosh 1997. Regulation of IκBβ in WEHI 231 mature B cells. Mol. Cell. Biol. 17: 4390–4396.
  • Pollard, V. W., W. M. Michael, S. Nakielny, M. C. Siomi, F. Wang, and G. Dreyfuss 1996. A novel receptor-mediated nuclear protein import pathway. Cell 86: 985–994.
  • Radu, A., G. Blobel, and M. S. Moore 1995. Identification of a protein complex that is required for nuclear-protein import and mediates docking of import substrate to distinct nucleoporins. Proc. Natl. Acad. Sci. USA 92: 1769–1773.
  • Regnier, C. H., H. Y. Song, X. Gao, D. V. Goeddel, Z. Cao, and M. Rothe 1997. Identification and characterization of an IκB kinase. Cell 90: 373–383.
  • Rexach, M., and G. Blobel 1995. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors and nucleoporins. Cell 83: 683–692.
  • Robbins, J., S. M. Dilworth, R. A. Laskey, and C. Dingwall 1988. Two interdependent basic domains in nucleoplasmin targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64: 615–623.
  • Rodriguez, M. S., J. Wright, J. Thompson, D. Thomas, F. Baleux, J.-L. Virelizier, R. T. Hay, and F. Arenzana-Seisdedos 1996. Identification of lysine residues required for signal-induced ubiquitination and degradation of IκBα in vivo. Oncogene 12: 2425–2435.
  • Rottjakob, E. M., S. Sachdev, C. A. Leanna, T. A. McKinsey, and M. Hannink 1995. PEST-dependent cytoplasmic retention of v-Rel by IκBα: evidence that IκBα regulates the cellular localization of c-Rel and v-Rel by distinct mechanisms. J. Virol. 70: 3176–3188.
  • Sachdev, S., and M. Hannink. Unpublished data.
  • Sachdev, S., E. M. Rottjakob, J. A. Diehl, and M. Hannink 1995. IκBα mediated inhibition of nuclear transport and DNA-binding by Rel proteins are separable functions: phosphorylation of C-terminal serine residues of IκBα is specifically required for inhibition of DNA-binding. Oncogene 11: 811–823.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sha, W. C., H. C. Liou, E. I. Tuomanen, and D. Baltimore 1995. Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses. Cell 80: 321–330.
  • Siomi, H., and G. Dreyfuss 1995. A nuclear localization domain in the hnRNP A1 protein. J. Cell Biol. 129: 551–560.
  • Stade, K., C. S. Ford, C. Guthrie, and K. Weis 1997. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90: 1041–1050.
  • Sun, S.-C., P. A. Ganchi, D. W. Ballard, and W. C. Greene 1993. NF-κB controls expression of inhibitor κB-α: evidence for an inducible autoregulatory pathway. Science 259: 1912–1915.
  • Thompson, J. E., R. J. Phillips, H. Erdjument-Bromage, P. Tempst, and S. Ghosh 1995. IκBβ regulates the persistent response in a biphasic activation of NF-κB. Cell 80: 573–582.
  • Traenckner, E. B., H. L. Pahl, T. Henkel, K. N. Schmidt, S. Wilk, and P. A. Baeuerle 1995. Phosphorylation of human IκBα on serines 32 and 36 controls IκBα proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14: 2876–2883.
  • Tran, K., M. Merika, and D. Thanos 1997. Distinct functional properties of IκBα and IκBβ. Mol. Cell. Biol. 17: 5386–5399.
  • Weis, K., I. W. Mattaj, and A. I. Lamond 1995. Identification of hSRP1α as a functional receptor for nuclear localization signals. Science 268: 1049–1053.
  • Wen, W., J. L. Meinkoth, R. Y. Tsien, and S. S. Taylor 1995. Identification of a signal for rapid export of proteins from the nucleus. Cell 82: 463–474.
  • Woronicz, J. D., X. Gao, Z. Cao, M. Rothe, and D. V. Goeddel 1997. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278: 866–869.
  • Zabel, U., T. Henkel, M. S. Silva, and P. A. Baeuerle 1993. Nuclear uptake control of NF-κB by MAD-3, an IκB protein present in the nucleus. EMBO J. 12: 201–211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.