16
Views
58
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Cooperative Pho2-Pho4 Interactions at the PHO5 Promoter Are Critical for Binding of Pho4 to UASp1 and for Efficient Transactivation by Pho4 at UASp2

, , &
Pages 2629-2639 | Received 24 Oct 1997, Accepted 17 Feb 1998, Published online: 28 Mar 2023

REFERENCES

  • Almer, A., and W. Hörz 1986. Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. EMBO J. 5: 2681–2687.
  • Almer, A., H. Rudolph, A. Hinnen, and W. Hörz 1986. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5: 2689–2696.
  • Arndt, K. T., C. Styles, and G. R. Fink 1987. Multiple global regulators control HIS4 transcription in yeast. Science 237: 874–880.
  • Barbaric, S., K. D. Fascher, and W. Hörz 1992. Activation of the weakly regulated PHO8 promoter in S. cerevisiae: chromatin transition and binding sites for the positive regulator protein PHO4. Nucleic Acids Res. 20: 1031–1038.
  • Barbaric, S., M. Münsterkötter, J. Svaren, and W. Hörz 1996. The homeodomain protein Pho2 and the basic-helix-loop-helix protein Pho4 bind DNA cooperatively at the yeast PHO5 promoter. Nucleic Acids Res. 24: 4479–4486.
  • Braus, G., H. U. Mösch, K. Vogel, A. Hinnen, and R. Hütter 1989. Interpathway regulation of the TRP4 gene of yeast. EMBO J. 8: 939–945.
  • Brazas, R. M., L. T. Bhoite, M. D. Murphy, Y. X. Yu, Y. Y. Chen, D. W. Neklason, and D. J. Stillman 1995. Determining the requirements for cooperative DNA binding by Swi5p and Pho2p (Grf10p/Bas2p) at the HO promoter. J. Biol. Chem. 270: 29151–29161.
  • Daignan-Fornier, B., and G. R. Fink 1992. Coregulation of purine and histidine biosynthesis by the transcriptional activators BAS1 and BAS2. Proc. Natl. Acad. Sci. USA 89: 6746–6750.
  • Fascher, K. D., J. Schmitz, and W. Hörz 1990. Role of trans-activating proteins in the generation of active chromatin at the PHO5 promoter in S. cerevisiae. EMBO J. 9: 2523–2528.
  • Fascher, K. D., J. Schmitz, and W. Hörz 1993. Structural and functional requirements for the chromatin transition at the PHO5 promoter in Saccharomyces cerevisiae upon PHO5 activation. J. Mol. Biol. 231: 658–667.
  • Guarente, L., and M. Ptashne 1981. Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78: 2199–2203.
  • Hirst, K., F. Fisher, P. C. McAndrew, and C. R. Goding 1994. The transcription factor, the cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal. EMBO J. 13: 5410–5420.
  • Jayaraman, P. S., K. Hirst, and C. R. Goding 1994. The activation domain of a basic helix-loop-helix protein is masked by repressor interaction with domains distinct from that required for transcription regulation. EMBO J. 13: 2192–2199.
  • Justice, M. C., B. P. Hogan, and A. K. Vershon 1997. Homeodomain-DNA interactions of the Pho2 protein are promoter-dependent. Nucleic Acids Res. 25: 4730–4739.
  • Kaffman, A., I. Herskowitz, R. Tjian, and E. K. O’Shea 1994. Phosphorylation of the transcription factor Pho4 by a cyclin-CDK complex, Pho80-Pho85. Science 263: 1153–1156.
  • Laughon, A. 1991. DNA binding specificity of homeodomains. Biochemistry 30: 11357–11367.
  • Lenburg, M. E., and E. K. Oshea 1996. Signaling phosphate starvation. Trends Biochem. Sci. 21: 383–387.
  • McBride, H. J., R. M. Brazas, Y. Yu, K. Nasmyth, and D. J. Stillman 1997. Long-range interactions at the HO promoter. Mol. Cell. Biol. 17: 2669–2678.
  • O’Neill, E. M., A. Kaffman, E. R. Jolly, and E. K. O’Shea 1996. Regulation of Pho4 nuclear localization by the Pho80-Pho85 cyclin-CDK complex. Science 271: 209–212.
  • Oshima, Y. 1982. Regulatory circuits for gene expression: the metabolism of galactose and phosphate The molecular biology of the yeast Saccharomyces cerevisiae: metabolism and gene expression. In: Strathern, J. N., E. W. Jones, and J. R. Broach159–180Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Rolfes, R. J., F. Zhang, and A. G. Hinnebusch 1997. The transcriptional activators Bas1, Bas2, and Abf1 bind positive regulatory sites as the critical elements for adenine regulation of ADE5,7. J. Biol. Chem. 272: 13343–13354.
  • Rudolph, H., and A. Hinnen 1987. The yeast PHO5 promoter: phosphate-control elements and sequences mediating mRNA start-site selection. Proc. Natl. Acad. Sci. USA 84: 1340–1344.
  • Sarkar, G., and S. S. Sommer 1990. The “megaprimer” method of site-directed mutagenesis. BioTechniques 8: 404–407.
  • Sengstag, C., and A. Hinnen 1988. A 28-bp segment of the Saccharomyces cerevisiae PHO5 upstream activator sequence confers phosphate control to the CYC1-lacZ gene fusion. Gene 67: 223–228.
  • Shao, D., C. L. Creasy, and L. W. Bergman 1996. Interaction of Saccharomyces cerevisiae Pho2 with Pho4 increases the accessibility of the activation domain of Pho4. Mol. Gen. Genet. 251: 358–364.
  • Straka, C., and W. Hörz 1991. A functional role for nucleosomes in the repression of a yeast promoter. EMBO J. 10: 361–368.
  • Svaren, J., and W. Hörz 1997. Transcription factors vs nucleosomes: regulation of the PHO5 promoter in yeast. Trends Biochem. Sci. 22: 93–97.
  • Svaren, J., J. Schmitz, and W. Hörz 1994. The transactivation domain of Pho4 is required for nucleosome disruption at the PHO5 promoter. EMBO J. 13: 4856–4862.
  • Svaren, J., U. Venter, and W. Hörz 1995. In vivo analysis of nucleosome structure and transcription factor binding in Saccharomyces cerevisiae. Microb. Gene Techniques 6: 153–167.
  • Venter, U., J. Svaren, J. Schmitz, A. Schmid, and W. Hörz 1994. A nucleosome precludes binding of the transcription factor Pho4 in vivo to a critical target site in the PHO5 promoter. EMBO J. 13: 4848–4855.
  • Vogel, K., W. Hörz, and A. Hinnen 1989. The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHO5 upstream activation regions. Mol. Cell. Biol. 9: 2050–2057.
  • Zhang, F., M. Kirouac, N. Zhu, A. G. Hinnebusch, and R. J. Rolfes 1997. Evidence that complex formation by Bas1p and Bas2p (Pho2p) unmasks the activation function of Bas1p in an adenine-repressible step of ADE gene transcription. Mol. Cell. Biol. 17: 3272–3283.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.