15
Views
51
CrossRef citations to date
0
Altmetric
Gene Expression

Ski6p Is a Homolog of RNA-Processing Enzymes That Affects Translation of Non-Poly(A) mRNAs and 60S Ribosomal Subunit Biogenesis

, , &
Pages 2688-2696 | Received 03 Nov 1997, Accepted 23 Feb 1998, Published online: 28 Mar 2023

REFERENCES

  • Ball, S. G., C. Tirtiaux, and R. B. Wickner 1984. Genetic control of L-A and L-BC dsRNA copy number in killer systems of Saccharomyces cerevisiae. Genetics 107: 199–217.
  • Blanc, A., C. Goyer, and N. Sonenberg 1992. The coat protein of the yeast double-stranded RNA virus L-A attaches covalently to the cap structure of eukaryotic mRNA. Mol. Cell. Biol. 12: 3390–3398.
  • Blanc, A., J. C. Ribas, R. B. Wickner, and N. Sonenberg 1994. His-154 is involved in the linkage of the Saccharomyces cerevisiae L-A double-stranded RNA virus Gag protein to the cap structure of mRNAs and is essential for M1 satellite virus expression. Mol. Cell. Biol. 14: 2664–2674.
  • Bruenn, J., and B. Keitz 1976. The 5′ ends of yeast killer factor RNAs are pppGp. Nucleic Acids Res. 3: 2427–2436.
  • Carroll, K., and R. B. Wickner 1995. Translation and M1 double-stranded RNA propagation: MAK18 = RPL41B and cycloheximide curing. J. Bacteriol. 177: 2887–2891.
  • Crouzet, M., F. Izgu, C. M. Grant, and M. F. Tuite 1988. The allosuppressor gene SAL4 encodes a protein important for maintaining translational fidelity in Saccharomyces cerevisiae. Curr. Genet. 14: 537–543.
  • Dangel, A. W., L. Shen, A. R. Mendoza, L.-C. Wu, and C. Y. Yu 1995. Human helicase gene SKI2W in the HLA class III region exhibits striking structural similarities to the yeast antiviral gene SKI2 and to the human gene KIAA0052: emergence of a new gene family. Nucleic Acids Res. 23: 2120–2126.
  • Decker, C. J., and R. Parker 1993. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7: 1632–1643.
  • Deutscher, M. P. 1990. Ribonucleases, tRNA nucleotidyltransferase and the 3′ processing of tRNA. Prog. Nucleic Acids Res. Mol. Biol. 39: 209–240.
  • Deutscher, M. P., G. T. Marshall, and H. Cudny 1988. RNase PH: an Escherichia coli phosphate-dependent nuclease distinct from polynucleotide phosphorylase. Proc. Natl. Acad. Sci. USA 85: 4710–4714.
  • Dinman, J. D. 1995. Ribosomal frameshifting in yeast viruses. Yeast 11: 1115–1127.
  • Dinman, J. D., T. Icho, and R. B. Wickner 1991. A −1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc. Natl. Acad. Sci. USA 88: 174–178.
  • Dinman, J. D., M. J. Ruiz-Echevarria, K. Czaplinski, and S. W. Peltz 1997. Peptidyl-transferase inhibitors have antiviral properties by altering programmed −1 ribosomal frameshifting efficiencies: development of model systems. Proc. Natl. Acad. Sci. USA 94: 6606–6611.
  • Dinman, J. D., and R. B. Wickner 1992. Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J. Virol. 66: 3669–3676.
  • Ehrenfeld, E. 1996. Initiation of translation by picornavirus RNAs Translational control. In: Hershey, J. W. B., M. B. Mathews, and N. Sonenberg549–573Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Erickson, J. R., and M. Johnston 1993. Direct cloning of yeast genes from an ordered set of lambda clones in Saccharomyces cerevisiae by recombination in vivo. Genetics 134: 151–157.
  • Everett, J. G., and D. R. Gallie 1992. RNA delivery in Saccharomyces cerevisiae using electroporation. Yeast 8: 1007–1014.
  • Gaber, R. F., and M. R. Culbertson 1982. Frameshift suppression in Saccharomyces cerevisiae. IV. New suppressors among spontaneous co-revertants of the group II his4-206 and leu2-3 frameshift mutations. Genetics 101: 345–367.
  • Gallie, D. R. 1991. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5: 2108–2116.
  • Guerreiro, P., A. M. E. Silva, T. Barreiros, J. Arroyo, M. Garcia-Gonzalez, M. I. Garcia-Saez, C. Rodrigues-Pousada, and C. Nombela 1995. The complete sequence of a 9000 bp fragment of the right arm of Saccharomyces cerevisiae chromosome VII contains four previously unknown open reading frames. Yeast 11: 1087–1091.
  • Hsu, C. L., and A. Stevens 1993. Yeast cells lacking 5′→3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell. Biol. 13: 4826–4835.
  • Jacobson, A. 1996. Poly(A) metabolism and translation: the closed-loop model Translational control. In: Hershey, J. W. B., M. B. Mathews, and N. Sonenberg451–480Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Johnson, A. W., and R. D. Kolodner 1995. Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control. Mol. Cell. Biol. 15: 2719–2727.
  • Jones, J. S., and L. Prakash 1990. Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers. Yeast 6: 363–366.
  • Kadowaki, T., R. Schneiter, M. Hitomi, and A. M. Tartakoff 1995. Mutations in nucleolar proteins lead to nucleolar accumulation of polyA+ RNA in Saccharomyces cerevisiae. Mol. Biol. Cell 6: 1103–1110.
  • Kelly, K. O., and M. P. Deutscher 1992. Characterization of Escherichia coli RNase PH. J. Biol. Chem. 267: 17153–17158.
  • Kelly, K. O., N. B. Reuven, Z. Li, and M. P. Deutscher 1992. RNase PH is essential for tRNA processing and viability in RNase-deficient Escherichia coli. J. Biol. Chem. 267: 16015–16018.
  • Lee, S.-G., I. Lee, C. Kang, and K. Song 1994. Identification and characterization of a human cDNA homologous to yeast SKI2. Genomics 25: 660–666.
  • Lee, W. C., D. Zabetakis, and T. Melese 1992. NSR1 is required for pre-rRNA processing and for the proper maintenance of steady-state levels of ribosomal subunits. Mol. Cell. Biol. 12: 3865–3871.
  • Liu, R., and S. W. Liebman 1996. A translational fidelity mutation in the universally conserved sarcin/ricin domain of 25S yeast ribosomal RNA. RNA 2: 254–263.
  • Masison, D. C., A. Blanc, J. C. Ribas, K. Carroll, N. Sonenberg, and R. B. Wickner 1995. Decoying the cap− mRNA degradation system by a double-stranded RNA virus and poly(A)− mRNA surveillance by a yeast antiviral system. Mol. Cell. Biol. 15: 2763–2771.
  • Mathews, M. B. 1996. Interactions between viruses and the cellular machinery for protein synthesis Translational control. In: Hershey, J. B., M. B. Mathews, and N. Sonenberg505–548Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Matsumoto, Y., G. Sarkar, S. S. Sommer, and R. B. Wickner 1993. A yeast antiviral protein, SKI8, shares a repeated amino acid sequence pattern with beta-subunits of G proteins and several other proteins. Yeast 8: 43–51.
  • Mitchell, P., E. Petfalski, A. Shevchenko, M. Mann, and D. Tollervey 1997. The exosome, a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91: 457–466.
  • Mitchell, P., E. Petfalski, and D. Tollervey 1996. The 3′ end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. Genes Dev. 10: 502–513.
  • Moritz, M., A. G. Paulovich, Y. F. Tsay, and J. L. Woolford 1990. Depletion of yeast ribosomal proteins L16 or RP59 disrupts ribosome assembly. J. Cell Biol. 111: 2261–2274.
  • Muhlrad, D., C. J. Decker, and R. Parker 1995. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell. Biol. 15: 2145–2156.
  • Munroe, D., and A. Jacobson 1990. mRNA poly(A) tail, a 3′ enhancer of translation initiation. Mol. Cell. Biol. 10: 3441–3455.
  • Munroe, D., and A. Jacobson 1990. Tales of poly(A): a review. Gene 91: 151–158.
  • Nelson, R. J., T. Ziegilhoffer, C. Nicolet, M. Werner-Washburne, and E. A. Craig 1992. The translation machinery and 70 kDal heat shock protein cooperate in protein synthesis. Cell 71: 97–105.
  • Ohtake, Y., and R. B. Wickner 1995. Yeast virus propagation depends critically on free 60S ribosomal subunit concentration. Mol. Cell. Biol. 15: 2772–2781.
  • Proweller, A., and J. S. Butler 1997. Ribosome concentration contributes to discrimination against poly(A)− mRNA during translation initiation in Saccharomyces cerevisiae. J. Biol. Chem. 272: 6004–6010.
  • Proweller, A., and J. S. Butler 1994. Efficient translation of poly(A)-deficient mRNAs in Saccharomyces cerevisiae. Genes Dev. 8: 2629–2640.
  • Rhee, S. K., T. Icho, and R. B. Wickner 1989. Structure and nuclear localization signal of the SKI3 antiviral protein of Saccharomyces cerevisiae. Yeast 5: 149–158.
  • Ridley, S. P., S. S. Sommer, and R. B. Wickner 1984. Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN. Mol. Cell. Biol. 4: 761–770.
  • Riles, L., J. E. Dutchik, A. Baktha, B. K. McCauley, E. C. Thayer, M. P. Leckie, V. V. Braden, J. E. Depke, and M. V. Olson 1993. Physical maps of the six smallest chromosomes of Saccharomyces cerevisiae at a resolution of 2.6 kilobase pairs. Genetics 134: 81–150.
  • Ripmaster, T. L., G. P. Vaughn, and J. L. Woolford 1993. DRS1 to DRS7, novel genes required for ribosome assembly and function in Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 7901–7912.
  • Sachs, A. B., P. Sarnow, and M. W. Hentze 1997. Starting at the beginning, middle and end: translation initiation in eukaryotes. Cell 89: 831–838.
  • Sandbaken, M. G., J. A. Lupisella, B. DiDimenico, and K. Chakraburtty 1990. Protein synthesis in yeast: structural and functional analysis of the gene encoding elongation factor 3. J. Biol. Chem. 265: 15838–15844.
  • Stevens, A. 1980. Purification and characterization of a Saccharomyces cerevisiae exoribonuclease which yields 5′ mononucleotides by a 5′→3′ mode of hydrolysis. J. Biol. Chem. 255: 3080–3085.
  • Stevens, A., and M. K. Maupin 1987. A 5′→3′ exoribonuclease of Saccharomyces cerevisiae: size and novel substrate specificity. Arch. Biochem. Biophys. 252: 339–347.
  • Thiele, D. J., E. M. Hannig, and M. J. Leibowitz 1984. Genome structure and expression of a defective interfering mutant of the killer virus of yeast. Virology 137: 20–31.
  • Toh-e, A., P. Guerry, and R. B. Wickner 1978. Chromosomal superkiller mutants of Saccharomyces cerevisiae. J. Bacteriol. 136: 1002–1007.
  • Toh-e, A., and R. B. Wickner 1980. “Superkiller” mutations suppress chromosomal mutations affecting double-stranded RNA killer plasmid replication in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 77: 527–530.
  • Tollervey, D., H. Lehtonen, R. Jansen, H. Kern, and E. C. Hurt 1993. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation and ribosome assembly. Cell 72: 443–457.
  • Vasilescu, S., M. Ptushkina, B. Linz, P. P. Muller, and J. E. McCarthy 1996. Mutants of eukaryotic initiation factor eIF-4E with altered mRNA cap binding specificity reprogram mRNA selection by ribosomes in Saccharomyces cerevisiae. J. Biol. Chem. 271: 7030–7037.
  • Venema, J., and D. Tollervey 1995. Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast 11: 1629–1650.
  • Wickner, R. B. 1996. Double-stranded RNA viruses of yeast. Microbiol. Rev. 60: 250–265.
  • Wickner, R. B. 1983. Killer systems in Saccharomyces cerevisiae: three distinct modes of exclusion of M2 double-stranded RNA by three species of double-stranded RNA, M1, L-A-E, and L-A-HN. Mol. Cell. Biol. 3: 654–661.
  • Wickner, R. B. 1980. Plasmids controlling exclusion of the K2 killer double-stranded RNA plasmid of yeast. Cell 21: 217–226.
  • Widner, W. R., and R. B. Wickner 1993. Evidence that the SKI antiviral system of Saccharomyces cerevisiae acts by blocking expression of viral mRNA. Mol. Cell. Biol. 13: 4331–4341.
  • Wilson, R., R. Ainscough, K. Anderson, C. Baynes, M. Berks, J. Bonfield, J. Burton, M. Connell, T. Copsey, J. Cooper, A. Coulson, M. Craxton, S. Dear, et al. 1994. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368: 32–38.
  • Woolford, J. L., and J. R. Warner The ribosome and its synthesis The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics In: Broach, J. R., J. R. Pringle, and E. W. Jones11991587–626Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Yoshioka, S., K. Kato, and H. Okayama. Unpublished data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.