18
Views
119
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Tumor Suppressor p53 Can Participate in Transcriptional Induction of the GADD45 Promoter in the Absence of Direct DNA Binding

, , &
Pages 2768-2778 | Received 07 Oct 1997, Accepted 19 Feb 1998, Published online: 28 Mar 2023

REFERENCES

  • Ahmed, M. M., S. F. Sells, K. Venkatasubbarao, S. M. Fruitwala, S. Muthukkumar, C. Harp, M. Mohiuddin, and V. M. Rangnekar 1997. Ionizing radiation-inducible apoptosis in the absence of p53 linked to transcription factor EGR-1. J. Biol. Chem. 272: 33056–33061.
  • Avantaggiati, M. L., V. Ogryzko, K. Gardner, A. Giordano, A. S. Levine, and K. Kelly 1997. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89: 1175–1184.
  • Buckler, A. J., J. Pelletier, D. A. Haber, T. Glaser, and D. E. Housman 1991. Isolation, characterization, and expression of the murine Wilms’ tumor gene (WT1) during kidney development. Mol. Cell. Biol. 11: 1707–1712.
  • Datta, R., N. Taneja, V. P. Sukhatme, S. A. Qureshi, R. Weichselbaum, and D. W. Kufe 1993. Reactive oxygen intermediates target CC(A/T)6GG sequences to mediate activation of the early growth response 1 transcription factor gene by ionizing radiation. Proc. Natl. Acad. Sci. USA 90: 2419–2422.
  • Day, M. L., T. J. Fahrner, S. Aykent, and J. Milbrandt 1990. The zinc finger protein NGFI-A exists in both nuclear and cytoplasmic forms in nerve growth factor-stimulated PC12 cells. J. Biol. Chem. 265: 15253–15260.
  • Dey, B. R., V. P. Sukhatme, A. B. Roberts, M. B. Sporn, Rauscher F. J., III, and S. J. Kim 1994. Repression of the transforming growth factor-beta 1 gene by the Wilms’ tumor suppressor WT1 gene product. Mol. Endocrinol. 8: 595–602.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11: 1475–1489.
  • Drummond, I. A., S. L. Madden, P. Rohwer-Nutter, G. I. Bell, V. P. Sukhatme, and F. J. D. Rauscher 1992. Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science 257: 674–678.
  • Englert, C., X. Hou, S. Maheswaran, P. Bennett, C. Ngwu, G. G. Re, A. J. Garvin, M. R. Rosner, and D. A. Haber 1995. WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J. 14: 4662–4675.
  • Englert, C., M. Vidal, S. Maheswaran, Y. Ge, R. M. Ezzell, K. J. Isselbacher, and D. A. Haber 1995. Truncated WT1 mutants alter the subnuclear localization of the wild-type protein. Proc. Natl. Acad. Sci. USA 92: 11960–11964.
  • Fan, S., M. L. Smith, Rivet D. J., II, D. Duba, Q. Zhan, K. W. Kohn, Fornace A. J., Jr., and P. M. O’Connor 1995. Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res. 55: 1649–1654.
  • Fornace, A. J.Jr., I. J. Alamo, and M. C. Hollander 1988. DNA damage-inducible transcripts in mammalian cells. Proc. Natl. Acad. Sci. USA 85: 8800–8804.
  • Fornace, A. J.Jr., D. W. Nebert, M. C. Hollander, J. D. Luethy, M. Papathanasiou, J. Fargnoli, and N. J. Holbrook 1989. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol. Cell. Biol. 9: 4196–4203.
  • Goodyer, P., M. Dehbi, E. Torban, W. Bruening, and J. Pelletier 1995. Repression of the retinoic acid receptor-alpha gene by the Wilms’ tumor suppressor gene product, wt1. Oncogene 10: 1125–1129.
  • Gu, W., X. L. Shi, and R. G. Roeder 1997. Synergistic activation of transcription by CBP and p53. Nature 387: 819–823.
  • Gujuluva, C. N., J. H. Baek, K. H. Shin, H. M. Cherrick, and N. H. Park 1994. Effect of UV-irradiation on cell cycle, viability and the expression of p53, gadd153 and gadd45 genes in normal and HPV-immortalized human oral keratinocytes. Oncogene 9: 1819–1827.
  • Haber, D. A. Personal communication.
  • Haber, D. A., S. Park, S. Maheswaran, C. Englert, G. G. Re, D. J. Hazen-Martin, D. A. Sens, and A. J. Garvin 1993. WT1-mediated growth suppression of Wilms tumor cells expressing a WT1 splicing variant. Science 262: 2057–2059.
  • Haber, D. A., R. L. Sohn, A. J. Buckler, J. Pelletier, K. M. Call, and D. E. Housman 1991. Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc. Natl. Acad. Sci. USA 88: 9618–9622.
  • Hallahan, D. E., V. P. Sukhatme, M. L. Sherman, S. Virudachalam, D. Kufe, and R. R. Weichselbaum 1991. Protein kinase C mediates x-ray inducibility of nuclear signal transducers EGR1 and JUN. Proc. Natl. Acad. Sci. USA 88: 2156–2160.
  • Harrington, M. A., B. Konicek, A. Song, X. L. Xia, W. J. Fredericks, and F. J. Rauscher 1993. Inhibition of colony-stimulating factor-1 promoter activity by the product of the Wilms’ tumor locus. J. Biol. Chem. 268: 21271–21275.
  • Hewitt, S. M., S. Hamada, T. J. McDonnell, Rauscher F. J., III, and G. F. Saunders 1995. Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms’ tumor suppressor gene WT1. Cancer Res. 55: 5386–5389.
  • Holbrook, N. J., Fornace, A. J.Jr. 1991. Response to adversity: molecular control of gene activation following genotoxic stress. New Biol. 3: 825–833.
  • Hollander, M. C., I. Alamo, J. Jackman, O. W. McBride, Fornace A. J., Jr. 1993. Sequence conservation and DNA damage-responsiveness of the mammalian gadd45 gene. J. Biol. Chem. 268: 24385–24393.
  • Hollander, M. C., Fornace, A. J.Jr. 1989. Induction of fos RNA by DNA-damaging agents. Cancer Res. 49: 1687–1692.
  • Huang, R. P., and E. D. Adamson 1995. A biological role for Egr-1 in cell survival following ultra-violet irradiation. Oncogene 10: 467–475.
  • Johnstone, R. W., R. H. See, S. F. Sells, J. Wang, S. Muthukkumar, C. Englert, D. A. Haber, J. D. Licht, S. P. Sugrue, T. Roberts, V. M. Rangnekar, and Y. Shi 1996. A novel repressor, par-4, modulates transcription and growth suppression functions of the Wilms’ tumor suppressor WT1. Mol. Cell. Biol. 16: 6945–6956.
  • Jones, K. A., K. R. Yamamoto, and R. Tjan 1985. Two distinct transcription factors bind to the HSV thymidine kinase promoter in vitro. Cell 42: 559–572.
  • Kastan, M. B., Q. Zhan, W. S. El-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, Fornace A. J., Jr. 1992. A mammalian cell cycle checkpoint utilizing p53 and GADD45 is defective in ataxia telangiectasia. Cell 71: 587–597.
  • Kedar, P. S., S. G. Widen, E. W. Englander, Fornace A. J., Jr., and S. H. Wilson 1991. The ATF/CREB transcription factor-binding site in the polymerase beta promoter mediates the positive effect of N-methyl-N′-nitro-N-nitrosoguanidine on transcription. Proc. Natl. Acad. Sci. USA 88: 3729–3733.
  • Kessis, T. D., R. J. Slebos, W. G. Nelson, M. B. Kastan, B. S. Plunkett, S. M. Han, A. T. Lorincz, L. Hedrick, and K. R. Cho 1993. Human papillomavirus 16 E6 expression disrupts the p53 mediated cellular response to DNA damage. Proc. Natl. Acad. Sci. USA 90: 3988–3992.
  • Khachigian, L. M., V. Lindner, A. J. Williams, and T. Collins 1996. Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science 271: 1427–1431.
  • Ko, L. J., and C. Prives 1996. p53: puzzle and paradigm. Genes Dev. 10: 1054–1072.
  • Kudoh, T., T. Ishidate, M. Moriyama, K. Toyoshima, and T. Akiyama 1995. G1 phase arrest induced by Wilms tumor protein WT1 is abrogated by cyclin/CDK complexes. Proc. Natl. Acad. Sci. USA 92: 4517–4521.
  • Lill, N. L., S. R. Grossman, D. Ginsberg, J. DeCaprio, and D. M. Livingston 1997. Binding and modulation of p53 by p300/CBP coactivators. Nature 387: 823–827.
  • Luethy, J. D., J. Fargnoli, J. S. Park, Fornace A. J., Jr., and N. J. Holbrook 1990. Isolation and characterization of the hamster gadd153 gene. Activation of promoter activity by agents that damage DNA. J. Biol. Chem. 265: 16521–16526.
  • Madden, S. L., D. M. Cook, J. F. Morris, A. Gashler, V. P. Sukhatme, Rauscher F. J., III. 1991. Transcriptional repression mediated by the WT1 Wilms tumor gene product. Science 253: 1550–1553.
  • Maheswaran, S., S. Park, A. Bernard, J. F. Morris, F. J. D. Rauscher, D. E. Hill, and D. A. Haber 1993. Physical and functional interaction between WT1 and p53 proteins. Proc. Natl. Acad. Sci. USA 90: 5100–5104.
  • Morris, J. F., S. L. Madden, O. E. Tournay, D. M. Cook, V. P. Sukhatme, Rauscher F. J., III. 1991. Characterization of the zinc finger protein encoded by the WT1 Wilms’ tumor locus. Oncogene 6: 2339–2348.
  • Murphy, M., A. Hinman, and A. J. Levine 1996. Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev. 10: 2971–2980.
  • Muzio, M., A. M. Chinnaiyan, F. C. Kischkel, K. O’Rourke, A. Shevchenko, J. Ni, C. Scaffidi, J. D. Bretz, M. Zhang, R. Gentz, M. Mann, P. H. Krammer, M. E. Peter, and V. M. Dixit 1996. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85: 817–827.
  • Nakagama, H., G. Heinrich, J. Pelletier, and D. E. Housman 1995. Sequence and structural requirements for high-affinity DNA binding by the WT1 gene product. Mol. Cell. Biol. 15: 1489–1498.
  • Nelson, W. G., and M. B. Kastan 1994. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol. Cell. Biol. 14: 1815–1823.
  • O’Connor, P. M., J. Jackman, I. Bae, T. G. Myers, S. Fan, M. Mutoh, D. Scudiero, A. Monks, E. A. Sausville, J. N. Weinstein, S. Friend, Fornace A. J., Jr., and K. W. Kohn 1997. Characterization of the p53 tumor suppressor pathway in cell lines of the NCI anticancer drug screen and correlations with the growth inhibitory potency of 123 anticancer agents. Cancer Res. 57: 4285–4300.
  • Park, S., A. Bernard, K. E. Bove, D. A. Sens, D. J. Hazen-Martin, A. J. Garvin, and D. A. Haber 1993. Inactivation of WT1 in nephrogenic rests, genetic precursors to Wilms’ tumour. Nat. Genet. 5: 363–367.
  • Pietenpol, J. A., T. Tokino, S. Thiagalingam, W. S. el-Deiry, K. W. Kinzler, and B. Vogelstein 1994. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci. USA 91: 1998–2002.
  • Prabhakar, N. R., B. C. Shenoy, M. S. Simonson, and N. S. Cherniack 1995. Cell selective induction and transcriptional activation of immediate early genes by hypoxia. Brain Res. 697: 266–270.
  • Rauscher, F. Personal communication.
  • Rauscher, F. J.III, J. F. Morris, O. E. Tournay, D. M. Cook, and T. Curran 1990. Binding of the Wilms’ tumor locus zinc finger protein to the EGR-1 consensus sequence. Science 250: 1259–1262.
  • Robertson, L. M., T. K. Kerppola, M. Vendrell, D. Luk, R. J. Smeyne, C. Bocchiaro, J. I. Morgan, and T. Curran 1995. Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron 14: 241–252.
  • Schiestl, R. H., F. Khogali, and N. Carls 1994. Reversion of the mouse pink-eyed unstable mutation induced by low doses of x-rays. Science 266: 1573–1576.
  • Shiao, R. T., L. Miglietta, S. Y. Khera, A. Wolfson, and C. E. Freter 1995. Dexamethasone and suramin inhibit cell proliferation and interleukin-6-mediated immunoglobulin secretion in human lymphoid and multiple myeloma cell lines. Leuk. Lymphoma 17: 485–494.
  • Smith, M. L., I. Chen, Q. Zhan, I. Bae, C. Chen, T. Gilmer, M. B. Kastan, P. M. O’Connor, Fornace A. J., Jr. 1994. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266: 1376–1380.
  • Smith, M. L., I. T. Chen, Q. Zhan, P. M. O’Connor, Fornace A. J., Jr. 1995. Involvement of the p53 tumor suppressor in repair of UV-type DNA damage. Oncogene 10: 1053–1059.
  • Smith, M. L., H. U. Kontny, Q. Zhan, A. Sreenath, P. M. O’Connor, Fornace A. J., Jr. 1996. Antisense GADD45 expression results in decreased DNA repair and sensitizes cells to UV-irradiation or cisplatin. Oncogene 13: 2255–2263.
  • Tokino, T., S. Thiagalingam, W. S. el-Deiry, T. Waldman, K. W. Kinzler, and B. Vogelstein 1994. p53 tagged sites from human genomic DNA. Hum. Mol. Genet. 3: 1537–1542.
  • Wang, X. W., et al. Unpublished data.
  • Wang, Z. Y., Q. Q. Qiu, M. Gurrieri, J. Huang, and T. F. Deuel 1995. WT1, the Wilms’ tumor suppressor gene product, represses transcription through an interactive nuclear protein. Oncogene 10: 1243–1247.
  • Wang, Z. Y., Q. Q. Qiu, J. Huang, M. Gurrieri, and T. F. Deuel 1995. Products of alternatively spliced transcripts of the Wilms’ tumor suppressor gene, wt1, have altered DNA binding specificity and regulate transcription in different ways. Oncogene 10: 415–422.
  • Werner, H., Z. Shen-Orr, Rauscher F. J., III, J. F. Morris, Roberts C. T., Jr., and D. LeRoith 1995. Inhibition of cellular proliferation by the Wilms’ tumor suppressor WT1 is associated with suppression of insulin-like growth factor I receptor gene expression. Mol. Cell. Biol. 15: 3516–3522.
  • Zhan, Q., et al. Unpublished data.
  • Zhan, Q., I. Bae, M. B. Kastan, Fornace A. J., Jr. 1994. The p53-dependent γ-ray response of GADD45. Cancer Res. 54: 2755–2760.
  • Zhan, Q., F. Carrier, Fornace A. J., Jr. 1993. Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol. Cell. Biol. 13: 4242–4250.
  • Zhan, Q., S. Fan, M. L. Smith, I. Bae, K. Yu, Alamo I., Jr., P. M. O’Connor, Fornace A. J., Jr. 1996. Abrogation of p53 function affects the response of gadd genes to DNA base damaging agents and medium starvation. DNA Cell Biol. 15: 805–815.
  • Zhan, Q., K. A. Lord, Alamo I., Jr., M. C. Hollander, F. Carrier, D. Ron, K. W. Kohn, B. Hoffman, D. A. Liebermann, Fornace A. J., Jr. 1994. The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol. Cell. Biol. 14: 2361–2371.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.