28
Views
180
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Distinct Functions Are Implicated for the GATA-4, -5, and -6 Transcription Factors in the Regulation of Intestine Epithelial Cell Differentiation

, , &
Pages 2901-2911 | Received 05 Sep 1997, Accepted 11 Feb 1998, Published online: 28 Mar 2023

REFERENCES

  • Abel, T., A. M. Michelson, and T. Maniatis 1993. A Drosophila GATA factor family member that binds to Adh regulatory sequences is expressed in the developing fat body. Development 119: 623–633.
  • Arceci, R. J., A. A. J. King, M. C. Simon, S. H. Orkin, and D. B. Wilson 1993. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol. Cell. Biol. 13: 2235–2246.
  • Barnard, J. A., and G. Warwick 1993. Butyrate rapidly induces growth inhibition and differentiation in HT-29 cells. Cell Growth Differ. 4: 495–501.
  • Barth, J., and R. Ivarie 1994. Polyvinyl alcohol enhances detection of low abundance transcripts in early stage quail embryos in a nonradioactive whole mount in situ hybridization technique. BioTechniques 17: 324–327.
  • Bartkowski, S., D. Zapp, H. Weber, G. Eberle, C. Zoidl, S. Senkel, L. Klein-Hitpass, and G. U. Ryffel 1993. Developmental regulation and tissue distribution of the liver transcription factor LFB1 (HNF1) in Xenopus laevis. Mol. Cell. Biol. 13: 421–431.
  • Briegel, K., K.-C. Lim, C. Plank, H. Beug, J. D. Engel, and M. Zenke 1993. Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Genes Dev. 7: 1097–1109.
  • Cheng, H., and C. P. LeBlond 1974. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the origin of the four epithelial cell types. Am. J. Anat. 141: 537–562.
  • Clevidence, D. E., D. G. Overdier, W. Tao, X. Qian, L. Pani, E. Lai, and R. H. Costa 1993. Identification of nine tissue-specific transcription factors of the hepatocyte nuclear factor 3/forkhead DNA-binding-domain family. Proc. Natl. Acad. Sci. USA 90: 3948–3952.
  • Dauca, M., F. Bouziges, S. Colin, M. Kedinger, J. M. Keller, J. Schilt, P. Simon-Assman, and K. Haffen 1990. Development of the vertebrate small intestine and mechanisms of cell differentiation. Int. J. Dev. Biol. 34: 205–218.
  • Dimaline, R., B. J. Campbell, F. Watson, A. K. Sandvik, J. Struthers, and P.-J. Noble 1997. Regulated expression of GATA-6 transcription factor in gastric endocrine cells. Gastroenterology 112: 1559–1567.
  • Egan, C. R., M. A. Chung, F. L. Allen, M. F. P. Heschl, C. L. Van Buskirk, and J. D. McGhee 1995. A gut-to pharynx/tail switch in embryonic expression of the Caenorhabditis elegans ges-1 gene center on two GATA sequences. Dev. Biol. 170: 397–419.
  • Evans, T. 1997. Regulation of cardiac gene expression by GATA-4/5/6. Trends Card. Med. 7: 75–83.
  • Evans, T., and G. Felsenfeld 1989. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell 58: 877–885.
  • Evans, T., and G. Felsenfeld 1991. Trans-activation of a globin promoter in non-erythroid cells. Mol. Cell. Biol. 11: 843–853.
  • Evans, T., M. Reitman, and G. Felsenfeld 1988. An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc. Natl. Acad. Sci. USA 85: 5976–5980.
  • Gordon, J. I., and M. L. Hermiston 1994. Differentiation and self-renewal in the mouse gastrointestinal epithelium. Curr. Biol. 6: 795–803.
  • Gove, C., M. Walmsley, S. Nijjar, D. Bertwistle, M. Guille, G. Partington, A. Bomford, and R. Patient 1997. Over-expression of GATA-6 in Xenopus embryos blocks differentiation of heart precursors. EMBO J. 16: 355–368.
  • Green, R. P., S. M. Cohn, J. C. Sacchettini, K. E. Jackson, and J. I. Gordon 1992. The mouse intestinal fatty acid binding protein gene: nucleotide sequence, pattern of developmental and regional expression, and proposed structure of its protein product. DNA Cell Biol. 11: 31–41.
  • Grepin, C., G. Nemer, and M. Nemer 1997. Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development 124: 2387–2395.
  • Henrique, D., J. Adam, A. Myat, A. Chitnis, J. Lewis, and D. Ish-Horowicz 1995. Expression of a Delta homologue in prospective neurons in the chick. Nature 375: 787–790.
  • Hodin, R. A., S. Meng, S. Archer, and R. Tang 1996. Cellular growth state differentially regulates enterocyte gene expression in butyrate-treated HT-29 cells. Cell Growth Differ. 7: 647–653.
  • Huang, W.-Y., E. Cukerman, and C.-C. Liew 1995. Identification of a GATA motif in the cardiac α-myosin heavy-chain-encoding gene and isolation of a human GATA-4 cDNA. Gene 155: 219–223.
  • Ishizuya-Oka, A., A. Shimozawa, H. Takeda, and Y.-B. Shi 1994. Cell-specific and spatio-temporal expression of intestinal fatty acid-binding protein gene during amphibian metamorphosis. Roux’s Arch. Dev. Biol. 204: 150–155.
  • Jiang, Y., and T. Evans 1996. The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. Dev. Biol. 174: 258–270.
  • Kelley, C., H. Blumberg, L. I. Zon, and T. Evans 1993. GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development 118: 817–827.
  • Kuo, C. T., E. E. Morrisey, R. Anandappa, K. Sigrist, M. M. Lu, M. S. Parmacek, C. Soudais, and J. M. Leiden 1997. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11: 1048–1060.
  • Laverriere, A. C., C. NacNeill, C. Mueller, R. E. Poelmann, J. B. E. Burch, and T. Evans 1994. GATA-4/5/6: a subfamily of three transcription factors expressed in developing heart and gut. J. Biol. Chem. 269: 23177–23184.
  • Leonard, M., M. Brice, J. D. Engel, and T. Papayannopoulou 1993. Dynamics of GATA transcription factor expression during erythroid differentiation. Blood 82: 1071–1079.
  • Lin, W.-H., L.-H. Huang, J.-Y. Yeh, J. Hoheisel, H. Lehrach, Y. H. Sun, and S.-F. Tsai 1995. Expression of a Drosophila GATA transcription factor in multiple tissues in the developing embryos. J. Biol. Chem. 270: 25150–25158.
  • Maeda, M. 1994. Gastric proton pump (H+/K+-ATPase): structure and gene regulation through GATA DNA-binding protein(s). J. Biochem. 115: 6–14.
  • Mietus-Snyder, M., F. M. Sladek, G. S. Ginsburg, C. F. Kuo, J. A. A. Ladias, J. E. Darnell, and S. K. Karathanasis 1992. Antagonism between apolipoprotein AI regulatory protein 1, Ear3/COUP-TF, and hepatocyte nuclear factor 4 modulates apolipoprotein CIII gene expression in liver and intestinal cells. Mol. Cell. Biol. 12: 1708–1718.
  • Molkentin, J. D., Q. Lin, S. A. Duncan, and E. N. Olson 1997. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11: 1061–1072.
  • Mushiake, S., Y. Etani, S. Shimada, M. Tohyama, M. Hasebe, M. Fuai, and M. Maeda 1994. Genes for members of the GATA-binding protein family (GATA-GT1 and GATA-GT2) together with H+/K+-ATPase are specifically transcribed in gastric parietal cells. FEBS Lett. 340: 117–120.
  • Ness, S. A., and J. D. Engel 1994. Vintage reds and whites: combinatorial transcription factor utilization in hematopoietic differentiation. Curr. Opin. Genet. Dev. 4: 718–724.
  • Orkin, S. H. 1992. GATA-binding transcription factors in hematopoietic cells. Blood 80: 575–581.
  • Patterton, D., W. P. Hayes, and Y. B. Shi 1995. Transcriptional activation of the matrix metalloproteinase gene stromelysin-3 coincides with thyroid hormone-induced cell death during frog metamorphosis. Dev. Biol. 167: 252–262.
  • Puzianowska-Kuznicka, M., J. Wong, A. Kanamori, and Y. B. Shi 1996. Functional characterization of a mutant thyroid hormone receptor in Xenopus laevis. J. Biol. Chem. 271: 33394–33403.
  • Rottman, J. N., and J. I. Gordon 1993. Comparison of the patterns of expression of rat intestinal fatty acid binding protein/human growth hormone fusion genes in cultured intestinal epithelial cell lines and in the gut epithelium of transgenic mice. J. Biol. Chem. 268: 11994–12002.
  • Schmidt, G. H., M. M. Wilkinson, and B. A. J. Ponder 1985. Cell migration pathway in the intestinal epithelium: an in situ marker system using mouse aggregation chimeras. Cell 40: 425–429.
  • Shi, Y.-B., and W. P. Hayes 1994. Thyroid hormone-dependent regulation of the intestinal fatty acid-binding protein gene during amphibian metamorphosis. Dev. Biol. 161: 48–58.
  • Shi, Y.-B., and A. Ishizuya-Oka 1996. Biphasic intestinal development in amphibians: embryogenesis and remodeling during metamorphosis. Curr. Top. Dev. Biol. 32: 205–235.
  • Shi, Y. B., Y. Yaoita, and D. D. Brown 1992. Genomic organization and alternative promoter usage of the two thyroid hormone receptor beta genes in Xenopus laevis. J. Biol. Chem. 267: 733–738.
  • Simon, M. C. 1995. Gotta have GATA. Nat. Genet. 11: 9–11.
  • Simon, T. C., and J. I. Gordon 1995. Intestinal epithelial cell differentiation: new insights from mice, flies, and nematodes. Curr. Opin. Genet. Dev. 5: 577–586.
  • Simon, T. C., L. J. J. Roberts, and J. I. Gordon 1995. A 20-nucleotide element in the intestinal fatty acid binding protein gene modulates its cell lineage-specific, differentiation-dependent, and cephalocaudal patterns of expression in transgenic mice. Proc. Natl. Acad. Sci. USA 92: 8685–8689.
  • Soudais, C., M. Bielinska, M. Heikinheimo, C. A. MacArthur, N. Narita, J. E. Saffitz, M. C. Simon, J. M. Leiden, and D. B. Wilson 1995. Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro. Development 121: 3877–3888.
  • Spieth, J., Y. H. Shim, K. Lea, R. Conrad, and T. Blumenthal 1991. Elt-1, an embryonically expressed Caenorhabditis elegans gene homologous to the GATA transcription factor family. Mol. Cell. Biol. 11: 4651–4659.
  • Suh, E., L. Chen, J. Taylor, and P. G. Traber 1994. A homeodomain protein related to caudal regulates intestine-specific gene transcription. Mol. Cell. Biol. 14: 7340–7351.
  • Suzuki, E., T. Evans, J. Lowry, L. Truong, D. W. Bell, J. R. Testa, and K. Walsh 1996. The human GATA-6 gene: structure, chromosomal location and regulation of expression by tissue-specific and mitogen-responsive signals. Genomics 38: 283–290.
  • Sweetser, D. A., E. H. Birkenmeier, I. J. Klisak, S. Zollman, R. S. Sparkes, T. Mohandas, A. J. Lusis, and J. I. Gordon 1987. The human and rodent intestinal fatty acid binding protein genes. J. Biol. Chem. 262: 16060–16071.
  • Tamura, S., X.-H. Wang, M. Maeda, and M. Futai 1993. Gastric DNA-binding proteins recognize upstream sequence motifs of parietal cell-specific genes. Proc. Natl. Acad. Sci. USA 90: 10876–10880.
  • Traber, P. G., and D. G. Silberg 1996. Intestine-specific gene transcription. Annu. Rev. Physiol. 58: 275–297.
  • Tsai, F.-Y., G. Keller, F. C. Kuo, M. Weiss, J. Chen, M. Rosenblatt, F. W. Alt, and S. H. Orkin 1994. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371: 221–226.
  • Yamagata, T., J. Nishida, R. Sakai, T. Tanaka, H. Honda, N. Hirano, H. Mano, Y. Yazaki, and H. Hirai 1995. Of the GATA-binding proteins, only GATA-4 selectively regulates the human interleukin-5 promoter in interleukin-5-producing cells which express multiple GATA-binding proteins. Mol. Cell. Biol. 15: 3830–3839.
  • Yang, H.-Y., and T. Evans 1992. Distinct roles for the two cGATA-1 finger domains. Mol. Cell. Biol. 12: 4562–4570.
  • Yang, H.-Y., and T. Evans 1995. Homotypic interactions of chicken GATA-1 can mediate transcriptional activation. Mol. Cell. Biol. 15: 1353–1363.
  • Zhang, C., and T. Evans 1994. Differential regulation of the two xGATA-1 genes during Xenopus development. J. Biol. Chem. 269: 478–484.
  • Zweibaum, A., M. Laburthe, E. Grasset, and D. Louvard 1989. Use of cultured cell lines in studies of intestinal cell differentiation and function Handbook of physiology. In: Shultz, S. G.223–255Oxford University Press, New York, N.Y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.