17
Views
180
CrossRef citations to date
0
Altmetric
Gene Expression

Selenium Deficiency Reduces the Abundance of mRNA for Se-Dependent Glutathione Peroxidase 1 by a UGA-Dependent Mechanism Likely To Be Nonsense Codon-Mediated Decay of Cytoplasmic mRNA

, &
Pages 2932-2939 | Received 14 Nov 1997, Accepted 17 Feb 1998, Published online: 28 Mar 2023

REFERENCES

  • Baker, R. D., S. S. Baker, K. LaRosa, C. Whitney, and P. E. Newburger 1993. Selenium regulation of glutathione peroxidase in human hepatoma cell line Hep3B. Arch. Biochem. Biophys. 304: 53–57.
  • Behne, D., and W. Wolters 1983. Distribution of selenium and glutathione peroxidase in the rat. J. Nutr. 113: 456–461.
  • Behne, D., H. Hilmert, S. Scheid, H. Gessner, and W. Elger 1988. Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim. Biophys. Acta 966: 12–21.
  • Belgrader, P., J. Cheng, X. Zhou, L. S. Stephenson, and L. E. Maquat 1994. Mammalian nonsense codons can be cis-effectors of nuclear mRNA half-life. Mol. Cell. Biol. 14: 8219–8228.
  • Bermano, G., J. R. Arthur, and J. E. Hesketh 1996. Selective control of cytosolic glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase mRNA stability by selenium supply. FEBS Lett. 387: 157–160.
  • Bermano, G., F. Nicol, J. A. Dyer, R. A. Sunde, G. J. Beckett, J. R. Arthur, and J. E. Hesketh 1995. Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem. J. 311: 425–430.
  • Berry, M. J., L. Banu, J. W. Harney, and P. R. Larsen 1993. Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J. 12: 3315–3322.
  • Berry, M. J., A. L. Maia, J. D. Kieffer, J. W. Harney, and P. R. Larsen 1992. Selenocysteine insertion or termination: factors affecting UGA codon fate and complementary anticodon: codon mutations. Endrocrinology 131: 1848–1852.
  • Berry, M. J., J. W. Harney, T. Ohama, and D. L. Hatfield 1994. Selenocysteine insertion or termination: factors affecting UGA codon fate and complementary anticodon:codon mutations. Nucleic Acids Res. 22: 3753–3759.
  • Böck, A., K. Forchhammer, J. Heider, and C. Baron 1991. Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem. Sci. 16: 463–467.
  • Boyer, J. L., J. M. Phillips, and J. Graf 1990. Preparation and specific applications of isolated hepatocyte couplets. Methods Enzymol. 192: 501–509.
  • Buckman, T. D., M. S. Sutphin, and C. D. Eckhert 1993. A comparison of the effects of dietary selenium on selenoprotein expression in rat brain and liver. Biochim. Biophys. Acta 1163: 176–184.
  • Chada, S., C. Whitney, and P. E. Newburger 1989. Post-transcriptional regulation of glutathione peroxidase gene expression by selenium in the HL-60 human myeloid cell line. Blood 74: 2535–2541.
  • Chang, M., and C. C. Reddy 1991. Active transcription of the selenium-dependent glutathione peroxidase gene in selenium-deficient rats. Biochem. Biophys. Res. Commun. 181: 1431–1436.
  • Cheng, J., P. Belgrader, X. Zhou, and L. E. Maquat 1994. Introns are cis effectors of the nonsense-codon-mediated reduction in nuclear mRNA abundance. Mol. Cell. Biol. 14: 6317–6325.
  • Cheng, J., and L. E. Maquat 1993. Nonsense codons can reduce the abundance of nuclear mRNA without affecting the abundance of pre-mRNA or half-life of cytoplasmic mRNA. Mol. Cell. Biol. 13: 1892–1902.
  • Chiang, L., J. Silnutzer, J. Pipas, and D. W. Barnes 1985. Selection of transformed cells in serum-free media. In Vitro Cell. Dev. Biol. 21: 707–712.
  • Christensen, M. J., and K. W. Burgener 1992. Dietary selenium stabilizes glutathione peroxidase mRNA in rat liver. J. Nutr. 122: 1620–1626.
  • Chu, F.-F., R. S. Esworthy, S. Akman, and J. H. Doroshow 1990. Modulation of glutathione peroxidase expression by selenium: effect on human MCF-7 breast cancer cell transfectants expressing a cellular glutathione peroxidase cDNA and doxorubicin-resistant MCF-7 cells. Nucleic Acids Res. 18: 1531–1539.
  • Diamond, A. M., I. S. Choi, P. F. Crain, T. Hashizume, S. C. Pomerantz, R. Cruz, C. J. Steer, K. E. Hill, R. F. Burk, J. A. McCloskey, and D. L. Hatfield 1993. Dietary selenium affects methylation of the Wobble nucleoside in the anticodon of selenocysteine tRNA[Ser]Sec. J. Biol. Chem. 19: 14215–14223.
  • Hall, J. C., and N. G. Reddy 1992. Protein D is differentially expressed and regulated in the rat epididymis. Biochem. Biophys. Res. Commun. 183: 1109–1116.
  • Hatfield, D., B. J. Lee, L. Hampton, and A. M. Diamond 1991. Selenium induces changes in the selenocysteine tRNA[Ser]Sec population in mammalian cells. Nucleic Acids Res. 19: 939–943.
  • Hill, K. E., P. R. Lyons, and R. F. Burk 1992. Differential regulation of rat liver selenoprotein mRNAs in selenium deficiency. Biochem. Biophys. Res. Commun. 185: 260–263.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 51–59.
  • Ho, Y., and A. J. Howard 1992. Cloning and characterization of the glutathione peroxidase gene. FEBS Lett. 301: 5–9.
  • Kelner, M. J., R. D. Bagnell, S. F. Uglik, M. A. Montoya, and G. T. Mullenbach 1995. Heterologous expression of selenium-dependent glutathione peroxidase affords cellular resistance to paraquat. Arch. Biochem. Biophys. 323: 40–46.
  • Kim, I. Y., and T. C. Stadtman 1995. Selenophosphate synthetase: detection in extracts of rat tissues by immunoblot assay and partial purification of the enzyme from the archaean Methanococcus vannielii. Proc. Natl. Acad. Sci. USA 92: 7710–7713.
  • Lei, X. G., J. K. Evenson, K. M. Thompson, and R. A. Sunde 1995. Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J. Nutr. 125: 1438–1446.
  • Lesson, A., A. Mehta, R. Singh, G. M. Chisolm, and D. M. Driscoll 1997. An RNA-binding protein recognizes a mammalian selenocysteine insertion sequence element required for cotranslational incorporation of selenocysteine. Mol. Cell. Biol. 17: 1977–1985.
  • Low, S. C., and M. J. Berry 1996. Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biol. Sci. 21: 203–208.
  • Low, S. C., J. W. Harney, and M. J. Berry 1995. Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis. J. Biol. Chem. 270: 21659–21664.
  • Maquat, L. E. 1995. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA 1: 453–465.
  • Maquat, L. E. 1996. Defects in RNA splicing and the consequence of shortened translational reading frames. Am. J. Hum. Genet. 59: 279–286.
  • Martin, G. W.III, J. W. Harney, and M. J. Berry 1996. Selenocysteine incorporation in eukaryotes: insights into mechanism and efficiency from sequence, structure, and spacing proximity studies of the type 1 deiodinase SECIS element. RNA 2: 171–182.
  • Moriarty, P. M., C. C. Reddy, and L. E. Maquat 1997. The presence of an intron within the rat gene for selenium-dependent glutathione peroxidase 1 is not required to protect nuclear RNA from UGA-mediated decay. RNA 3: 1369–1373.
  • Paglia, D. E., and W. N. Valentine 1967. Studies in the quantitative and qualitative characterization of glutathione peroxidase. J. Lab. Clin. Med. 70: 158–169.
  • Peltz, S. W., H. Feng, E. Welch, and A. Jacobson 1994. Nonsense-mediated decay in yeast. Prog. Nucleic Acid Res. Mol. Biol. 47: 271–298.
  • Reddy, A. P., B. L. Hsu, P. S. Reddy, N. Q. Li, T. Kedam, C. C. Reddy, M. F. Tam, and C. P. D. Tu 1988. Expression of glutathione peroxidase 1 gene in selenium-deficient rats. Nucleic Acids Res. 16: 5561–5568.
  • Reddy, A. P., B. L. Hsu, P. S. Reddy, N. Q. Li, K. Thyagaraju, C. C. Reddy, M. F. Tam, and C. P. D. Tu 1988. Expression of glutathione peroxidase 1 gene in selenium-deficient rats. Nucleic Acids Res. 16: 5557–5568.
  • Reddy, C. C., C. E. Thomas, and R. W. Scholz 1985. Xenobiotic metabolism: nutritional effects. ACS Symp. Ser. 277: 253–265.
  • Reddy, C. C., C. P. Tu, J. R. Burgess, C. Y. Ho, R. W. Scholz, and E. J. Massaro 1981. Evidence for the occurrence of selenium-independent glutathione peroxidase activity in rat liver microsomes. Biochem. Biophys. Res. Commun. 101: 970–978.
  • Ruiz-Echevarria, M. J., and S. W. Peltz 1996. Utilizing the GCN4 leader region to investigate the role of the sequence determinants in nonsense-mediated mRNA decay. EMBO J. 15: 2810–2819.
  • Saedi, M., C. G. Smith, J. Frampton, I. Chambers, P. R. Harrison, and R. A. Sunde 1988. Effect of selenium status on mRNA levels for glutathione peroxidase in rat liver. Biochem. Biophys. Res. Commun. 53: 855–861.
  • Seglen, P. O. 1973. Preparation of rat liver cells. III. Enzymatic requirements for tissue dispersion. Exp. Cell Res. 82: 391–398.
  • Toyoda, H., S.-I. Himeno, and N. Imura 1989. The regulation of glutathione peroxidase gene expression relevant to species difference and the effects of dietary selenium manipulation. Biochim. Biophys. Acta 1008: 301–308.
  • Toyoda, H., S.-I. Himeno, and N. Imura 1990. Regulation of glutathione peroxidase mRNA level by dietary selenium manipulation. Biochim. Biophys. Acta 1049: 213–215.
  • Vendeland, S. C., M. A. Beilstein, J. Y. Yeh, W. Ream, and P. D. Whanger 1995. Rat skeletal muscle selenoprotein W: cDNA clone and mRNA modulation by dietary selenium. Proc. Natl. Acad. Sci. USA 92: 8749–8753.
  • Weiss, S. L., J. K. Evenson, K. M. Thompson, and R. A. Sunde 1996. The selenium requirement for glutathione peroxidase mRNA level is half of the selenium requirement for glutathione peroxidase activity in female rats. J. Nutr. 126: 2260–2267.
  • Weiss, S. L., and R. A. Sunde 1997. Selenium regulation of classical glutathione peroxidase expression requires the 3′ untranslated region in Chinese hamster ovary cells. J. Nutr. 127: 1304–1310.
  • Wigler, M., R. Sweet, G. K. Sim, B. Wold, A. Pellicer, E. Lacy, T. Maniatis, S. Silverstein, and R. Axel 1979. Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell 16: 777–785.
  • Zhang, J., and L. E. Maquat 1996. Evidence that the decay of nucleus-associated nonsense mRNA for human triosephosphate isomerase involves nonsense codon recognition after splicing. RNA 2: 235–243.
  • Zhang, J., X. Sun, Y. Qian, and L. E. Maquat. At least one intron is required for nonsense-mediated decay of triosephosphate isomerase mRNA: a possible link between nuclear splicing and cytoplasmic translation. Submitted for publication.
  • Zhang, J., X. Sun, Y. Qian, and L. E. Maquat. Intron function in the nonsense-mediated decay of β-globin mRNA: indications that nuclear splicing can influence cytoplasmic translation. Submitted for publication.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.