3
Views
50
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

The Position and Length of the Steroid-Dependent Hypersensitive Region in the Mouse Mammary Tumor Virus Long Terminal Repeat Are Invariant despite Multiple Nucleosome B Frames

, , &
Pages 3633-3644 | Received 22 Jan 1998, Accepted 06 Mar 1998, Published online: 28 Mar 2023

REFERENCES

  • Almer, A., and W. Horz 1986. Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. EMBO J. 5: 2681–2687.
  • Almer, A., H. Rudolph, A. Hinnen, and W. Horz 1986. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5: 2689–2696.
  • Archer, T. K., M. G. Cordingley, R. G. Wolford, and G. L. Hager 1991. Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter. Mol. Cell. Biol. 11: 688–698.
  • Archer, T. K., H.-L. Lee, M. G. Cordingley, J. S. Mymryk, G. Fragoso, D. S. Berard, and G. L. Hager 1994. Differential steroid hormone induction of transcription from the mouse mammary tumor virus promoter. Mol. Endocrinol. 8: 568–576.
  • Archer, T. K., P. Lefebvre, R. G. Wolford, and G. L. Hager 1992. Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation. Science 255: 1573–1576.
  • Archer, T. K., E. Zaniewski, M. L. Moyer, and S. K. Nordeen 1994. The differential capacity of glucocorticoids and progestins to alter chromatin structure and induce gene expression in human breast cancer cells. Mol. Endocrinol. 8: 1154–1162.
  • Bannister, A. J., and T. Kouzarides 1996. The CBP co-activator is a histone acetyltransferase. Nature 384: 641–643.
  • Bartsch, J., M. Truss, J. Bode, and M. Beato 1996. Moderate increase in histone acetylation activates the mouse mammary tumor virus promoter and remodels its nucleosome structure. Proc. Natl. Acad. Sci. USA 93: 10741–10746.
  • Bavykin, S. G., S. I. Usachenko, A. O. Zalensky, and A. D. Mirzabekov 1990. Structure of nucleosomes and organization of internucleosomal DNA in chromatin. J. Mol. Biol. 212: 495–511.
  • Boronat, S., H. Richard-Foy, and B. Pina 1997. Specific deactivation of the mouse mammary tumor virus long terminal repeat promoter upon continuous hormone treatment. J. Biol. Chem. 272: 21803–21810.
  • Boyes, J., and G. Felsenfeld 1996. Tissue-specific factors additively increase the probability of the all-or-none formation of a hypersensitive site. EMBO J. 15: 2496–2507.
  • Bresnick, E. H., M. Bustin, V. Marsaud, H. Richard-Foy, and G. L. Hager 1992. The transcriptionally-active MMTV promoter is depleted of histone H1. Nucleic Acids Res. 20: 273–278.
  • Bresnick, E. H., S. John, D. S. Berard, P. Lefebvre, and G. L. Hager 1990. Glucocorticoid receptor-dependent disruption of a specific nucleosome on the mouse mammary tumor virus promoter is prevented by sodium butyrate. Proc. Natl. Acad. Sci. USA 87: 3977–3981.
  • Brownell, J. E., J. Zhou, T. Ranalli, R. Kobayashi, D. G. Edmondson, S. Y. Roth, and C. D. Allis 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851.
  • Buttinelli, M., E. Di Mauro, and R. Negri 1993. Multiple nucleosome positioning with unique rotational setting for the Saccharomyces cerevisiae 5S rRNA gene in vitro and in vivo. Proc. Natl. Acad. Sci. USA 90: 9315–9319.
  • Cairns, B. R., R. S. Levinson, K. R. Yamamoto, and R. D. Kornberg 1996. Essential role of Swp73p in the function of yeast Swi/Snf complex. Genes Dev. 10: 2131–2144.
  • Cato, A. C., R. Miksicek, G. Schütz, J. Arnemann, and M. Beato 1986. The hormone regulatory element of mouse mammary tumour virus mediates progesterone induction. EMBO J. 5: 2237–2240.
  • Cavin, C., and E. Buetti 1995. Tissue-specific and ubiquitous factors binding next to the glucocorticoid receptor modulate transcription from the mouse mammary tumor virus promoter. J. Virol. 69: 3759–3770.
  • Chen, H., R. J. Lin, R. L. Schiltz, D. Chakravarti, A. Nash, L. Nagy, M. L. Privalsky, Y. Nakatani, and R. M. Evans 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90: 569–580.
  • Cordingley, M. G., A. T. Riegel, and G. L. Hager 1987. Steroid-dependent interaction of transcription factors with the inducible promoter of mouse mammary tumor virus in vivo. Cell 48: 261–270.
  • Costanzo, G., E. Di Mauro, R. Negri, G. Pereira, and C. Hollenberg 1995. Multiple overlapping positions of nucleosomes with single in vivo rotational setting in the Hansenula polymorpha RNA polymerase II MOX promoter. J. Biol. Chem. 270: 11091–11097.
  • Cote, J., J. Quinn, J. L. Workman, and C. L. Peterson 1994. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265: 53–60.
  • Eadara, J. K., K. G. Hadlock, and L. C. Lutter 1996. Chromatin structure and factor site occupancies in an in vivo-assembled transcription elongation complex. Nucleic Acids Res. 24: 3887–3895.
  • Eadara, J. K., and L. C. Lutter 1996. Determination of occupancies of the SPH and GT-IIC transcription factor binding motifs in SV40: evidence for two forms of transcription elongation complex. Virology 223: 120–131.
  • Felsenfeld, G. 1992. Chromatin as an essential part of the transcriptional mechanism. Nature 355: 219–224.
  • Fragoso, G., and G. L. Hager 1997. Analysis of in vivo nucleosome positions by determination of nucleosome-linker boundaries in crosslinked chromatin. Methods Companion Methods Enzymol. 11: 246–252.
  • Fragoso, G., S. John, M. S. Roberts, and G. L. Hager 1995. Nucleosome positioning on the MMTV LTR results from the frequency-biased occupancy of multiple frames. Genes Dev. 9: 1933–1947.
  • Gouilleux, F., B. Sola, B. Couette, and H. Richard-Foy 1991. Cooperation between structural elements in hormono-regulated transcription from the mouse mammary tumor virus promoter. Nucleic Acids Res. 19: 1563–1569.
  • Gowland, P. L., and E. Buetti 1989. Mutations in the hormone regulatory element of mouse mammary tumor virus differentially affect the response to progestins, androgens and glucocorticoids. Mol. Cell. Biol. 9: 3999–4008.
  • Hadlock, K. G., and L. C. Lutter 1990. T-antigen is not bound to the replication origin of the simian virus 40 late transcription complex. J. Mol. Biol. 215: 53–65.
  • Hartig, E., B. Nierlich, S. Mink, G. Nebl, and A. C. Cato 1993. Regulation of expression of mouse mammary tumor virus through sequences located in the hormone response element: involvement of cell-cell contact and a negative regulatory factor. J. Virol. 67: 813–821.
  • Hewish, D. R., and L. A. Burgoyne 1973. Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem. Biophys. Res. Commun. 52: 504–510.
  • Htun, H., D. Walker, and G. L. Hager 1998. Optical imaging approach to study protein-DNA interaction and nuclear organization in cultured living cells Structure, motion, interaction, and expression of biological macromolecules. In: Sarma, R. H., and M. H. Sarma157–166Adenine Press, Schenectady, N.Y.
  • Hynes, N., A. J. van Ooyen, N. Kennedy, P. Herrlich, H. Ponta, and B. Groner 1983. Subfragments of the large terminal repeat cause glucocorticoid-responsive expression of mouse mammary tumor virus and of an adjacent gene. Proc. Natl. Acad. Sci. USA 80: 3637–3641.
  • Imbalzano, A. N., H. Kwon, M. R. Green, and R. E. Kingston 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370: 481–485.
  • Jupe, E. R., R. R. Sinden, and I. L. Cartwright 1993. Stably maintained microdomain of localized unrestrained supercoiling at a Drosophila heat shock gene locus. EMBO J. 12: 1067–1075.
  • Ko, M. S., H. Nakauchi, and N. Takahashi 1990. The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J. 9: 2835–2842.
  • Kornberg, R. D., and L. Stryer 1988. Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res. 16: 6677–6690.
  • Kramer, P. R., and R. R. Sinden 1997. Measurement of unrestrained negative supercoiling and topological domain size in living human cells. Biochemistry 36: 3151–3158.
  • Kuhnel, B., E. Buetti, and H. Diggelmann 1986. Functional analysis of the glucocorticoid regulatory elements present in the mouse mammary tumor virus long terminal repeat: a synthetic distal binding site can replace the proximal binding domain. J. Mol. Biol. 190: 367–378.
  • Kuo, M. H., J. E. Brownell, R. E. Sobel, T. A. Ranalli, R. G. Cook, D. G. Edmondson, S. Y. Roth, and C. D. Allis 1996. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383: 269–272.
  • Langer, S. J., and M. C. Ostrowski 1988. Negative regulation of transcription in vitro by a glucocorticoid response element is mediated by a trans-acting factor. Mol. Cell. Biol. 8: 3872–3881.
  • Lee, D. Y., J. J. Hayes, D. Pruss, and A. P. Wolffe 1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72: 73–84.
  • Lee, H.-L., and T. K. Archer 1994. Nucleosome-mediated disruption of transcription factor: chromatin initiation complexes at the mouse mammary tumor virus long terminal repeat in vivo. Mol. Cell. Biol. 14: 32–41.
  • Lee, K. I., E. P. Reddy, and C. D. Reddy 1995. Cellular factors binding to a novel cis-acting element mediate steroid hormone responsiveness of mouse mammary tumor virus promoter. J. Biol. Chem. 270: 24502–24508.
  • Le Ricousse, S., F. Gouilleux, D. Fortin, V. Joulin, and H. Richard-Foy 1996. Glucocorticoid and progestin receptors are differently involved in the cooperation with a structural element of the mouse mammary tumor virus promoter. Proc. Natl. Acad. Sci. USA 93: 5072–5077.
  • Linxweiler, W., and W. Horz 1984. Reconstitution of mononucleosomes: characterization of distinct particles that differ in the position of the histone core. Nucleic Acids Res. 12: 9395–9413.
  • Lu, Q., L. L. Wallrath, and S. C. Elgin 1995. The role of a positioned nucleosome at the Drosophila melanogaster hsp26 promoter. EMBO J. 14: 4738–4746.
  • Meersseman, G., S. Pennings, and E. M. Bradbury 1992. Mobile nucleosomes—a general behavior. EMBO J. 11: 2951–2959.
  • Meulia, T., and H. Diggelmann 1990. Tissue-specific factors and glucocorticoid receptors present in nuclear extracts bind next to each other in the promoter region of mouse mammary tumor virus. J. Mol. Biol. 216: 859–872.
  • Morse, R. H. 1989. Nucleosomes inhibit both transcriptional initiation and elongation by RNA polymerase III in vitro. EMBO J. 8: 2343–2351.
  • Muchardt, C., and M. Yaniv 1993. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12: 4279–4290.
  • Mymryk, J. S., D. Berard, G. L. Hager, and T. K. Archer 1995. Mouse mammary tumor virus chromatin in human breast cancer cells is constitutively hypersensitive and exhibits steroid hormone independent loading of transcription factors in vivo. Mol. Cell. Biol. 15: 26–34.
  • Noll, M., and R. D. Kornberg 1977. Action of micrococcal nuclease on chromatin and the location of histone H1. J. Mol. Biol. 109: 393–404.
  • Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and Y. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959.
  • Ostlund Farrants, A. K., P. Blomquist, H. Kwon, and O. Wrange 1997. Glucocorticoid receptor-glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex. Mol. Cell. Biol. 17: 895–905.
  • Ostrowski, M. C., H. Richard-Foy, R. G. Wolford, D. S. Berard, and G. L. Hager 1983. Glucocorticoid regulation of transcription at an amplified, episomal promoter. Mol. Cell. Biol. 3: 2045–2057.
  • Payvar, F., D. DeFranco, G. L. Firestone, B. Edgar, O. Wrange, S. Okret, J. A. Gustafsson, and K. R. Yamamoto 1983. Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region. Cell 35: 381–392.
  • Pazin, M. J., P. Bhargava, E. P. Geiduschek, and J. T. Kadonaga 1997. Nucleosome mobility and the maintenance of nucleosome positioning. Science 276: 809–812.
  • Pennie, W. D., G. L. Hager, and C. L. Smith 1995. Nucleoprotein structure influences the response of the mouse mammary tumor virus promoter to activation of the cyclic AMP signalling pathway. Mol. Cell. Biol. 15: 2125–2134.
  • Pennings, S., G. Meersseman, and E. M. Bradbury 1991. Mobility of positioned nucleosomes on 5 S rDNA. J. Mol. Biol. 220: 101–110.
  • Perlmann, T., and O. Wrange 1988. Specific glucocorticoid receptor binding to DNA reconstituted in a nucleosome. EMBO J. 7: 3073–3079.
  • Peterson, D. O. 1985. Alterations in chromatin structure associated with glucocorticoid-induced expression of endogenous mouse mammary tumor virus genes. Mol. Cell. Biol. 5: 1104–1110.
  • Pina, B., U. Brüggemeier, and M. Beato 1990. Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter. Cell 60: 719–731.
  • Polach, K. J., and J. Widom 1995. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254: 130–149.
  • Polach, K. J., and J. Widom 1996. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258: 800–812.
  • Prunell, A., and R. D. Kornberg 1982. Variable center to center distance of nucleosomes in chromatin. J. Mol. Biol. 154: 515–523.
  • Richard-Foy, H., and G. L. Hager 1987. Sequence specific positioning of nucleosomes over the steroid-inducible MMTV promoter. EMBO J. 6: 2321–2328.
  • Scheidereit, C., S. Geisse, H. M. Westphal, and M. Beato 1983. The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumour virus. Nature 304: 749–752.
  • Spencer, T. E., G. Jenster, M. M. Burcin, C. D. Allis, J. Zhou, C. A. Mizzen, N. J. McKenna, S. A. Onate, S. Y. Tsai, M. J. Tsai, and B. W. O’Malley 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389: 194–198.
  • Steger, D. J., and J. L. Workman 1997. Stable co-occupancy of transcription factors and histones at the HIV-1 enhancer. EMBO J. 16: 2463–2472.
  • Strauss, F., and A. Prunell 1982. Nucleosome spacing in rat liver chromatin. A study with exonuclease III. Nucleic Acids Res. 10: 2275–2293.
  • Tack, L. C., P. M. Wassarman, and M. L. DePamphilis 1981. Chromatin assembly. Relationship of chromatin structure to DNA sequence during simian virus 40 replication. J. Biol. Chem. 256: 8821–8828.
  • Tanaka, H., Y. Dong, Q. Li, S. Okret, and J. A. Gustafsson 1991. Identification and characterization of a cis-acting element that interferes with glucocorticoid-inducible activation of the mouse mammary tumor virus promoter. Proc. Natl. Acad. Sci. USA 88: 5393–5397.
  • Tanaka, H., Y. Dong, J. McGuire, S. Okret, L. Poellinger, I. Makino, and J. A. Gustafsson 1993. The glucocorticoid receptor and a putative repressor protein coordinately modulate glucocorticoid responsiveness of the mouse mammary tumor virus promoter in the rat hepatoma cell line M1.19. J. Biol. Chem. 268: 1854–1859.
  • Tanaka, S., M. Livingstone-Zatchej, and F. Thoma 1996. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context. J. Mol. Biol. 257: 919–934.
  • Truss, M., J. Bartsch, A. Schelbert, R. J. Hache, and M. Beato 1995. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. EMBO J. 14: 1737–1751.
  • Ucker, D. S., and K. R. Yamamoto 1984. Early events in the stimulation of mammary tumor virus RNA synthesis by glucocorticoids. Novel assays of transcription rates. J. Biol. Chem. 259: 7416–7420.
  • Vanderbilt, J. N., R. Miesfeld, B. A. Maler, and K. R. Yamamoto 1987. Intracellular receptor concentration limits glucocorticoid-dependent enhancer activity. Mol. Endocrinol. 1: 68–74.
  • Varga-Weisz, P. D., T. A. Blank, and P. B. Becker 1995. Energy-dependent chromatin accessibility and nucleosome mobility in a cell-free system. EMBO J. 14: 2209–2216.
  • Venditti, P., G. Costanzo, R. Negri, and G. Camilloni 1994. ABFI contributes to the chromatin organization of Saccharomyces cerevisiae ARS1 B-domain. Biochim. Biophys. Acta 1219: 677–689.
  • Vettese-Dadey, M., P. A. Grant, T. R. Hebbes, C. Crane-Robinson, C. D. Allis, and J. L. Workman 1996. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15: 2508–2518.
  • von der Ahe, D., S. Janich, C. Scheidereit, R. Renkawitz, G. Schütz, and M. Beato 1985. Glucocorticoid and progesterone receptors bind to the same sites in two hormonally regulated promoters. Nature 313: 706–709.
  • Walters, M. C., S. Fiering, J. Eidemiller, W. Magis, M. Groudine, and D. I. K. Martin 1995. Enhancers increase the probability but not the level of gene expression. Proc. Natl. Acad. Sci. USA 92: 7125–7129.
  • Wasylyk, B., and P. Chambon 1980. Studies on the mechanism of transcription of nucleosomal complexes. Eur. J. Biochem. 103: 219–226.
  • Workman, J. L., and J. P. Langmore 1985. Efficient solubilization and partial purification of sea urchin histone genes as chromatin. Biochemistry 24: 4731–4738.
  • Yang, X. J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and Y. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382: 319–324.
  • Yoshinaga, S. K., C. L. Peterson, I. Herskowitz, and K. R. Yamamoto 1992. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258: 1598–1604.
  • Zaret, K. S., and K. R. Yamamoto 1984. Reversible and persistent changes in chromatin structure accompany activation of a glucocorticoid-dependent enhancer element. Cell 38: 29–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.