15
Views
28
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Cyclin-Stimulated Binding of Cks Proteins to Cyclin-Dependent Kinases

&
Pages 3659-3667 | Received 10 Oct 1997, Accepted 25 Mar 1998, Published online: 28 Mar 2023

REFERENCES

  • Arion, D., L. Meijer, L. Brizuela, and D. Beach 1988. cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF. Cell 55: 371–378.
  • Arvai, A. S., Y. Bourne, M. J. Hickey, and J. A. Tainer 1995. Crystal structure of the human cell cycle protein CksHs1: single domain fold with similarity to kinase N-lobe domain. J. Mol. Biol. 249: 835–842.
  • Arvai, A. S., Y. Bourne, D. Williams, S. I. Reed, and J. A. Tainer 1995. Crystallization and preliminary crystallographic study of human CksHs1: a cell cycle regulatory protein. Proteins 21: 70–73.
  • Basi, G., and G. Draetta 1995. p13suc1 of Schizosaccharomyces pombe regulates two distinct forms of the mitotic cdc2 kinase. Mol. Cell. Biol. 15: 2028–2036.
  • Booher, R. N., C. E. Alfa, J. S. Hyams, and D. H. Beach 1989. The fission yeast cdc2/cdc13/suc1 protein kinase: regulation of catalytic activity and nuclear localization. Cell 58: 485–497.
  • Bourne, Y., A. S. Arvai, S. L. Bernstein, M. H. Watson, S. I. Reed, J. E. Endicott, M. E. Noble, L. N. Johnson, and J. A. Tainer 1995. Crystal structure of the cell cycle-regulatory protein suc1 reveals a beta-hinge conformational switch. Proc. Natl. Acad. Sci. USA 92: 10232–10236.
  • Bourne, Y., M. H. Watson, M. J. Hickey, W. Holmes, W. Rocque, S. I. Reed, and J. A. Tainer 1996. Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1. Cell 84: 863–874.
  • Coleman, T. R., and W. G. Dunphy 1994. Cdc2 regulatory factors. Curr. Opin. Cell Biol. 6: 877–882.
  • Connell-Crowley, L., M. J. Solomon, N. Wei, and J. W. Harper 1993. Phosphorylation independent activation of human cyclin dependent kinase 2 by cyclin A in vitro. Mol. Biol. Cell 4: 79–92.
  • Ducommun, B., P. Brambilla, and G. Draetta 1991. Mutations at sites involved in Suc1 binding inactivate Cdc2. Mol. Cell. Biol. 11: 6177–6184.
  • Dunphy, W. G., L. Brizuela, D. Beach, and J. Newport 1988. The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54: 423–431.
  • Dunphy, W. G., and J. W. Newport 1989. Fission yeast p13 blocks mitotic activation and tyrosine dephosphorylation of the Xenopus cdc2 protein kinase. Cell 58: 181–191.
  • Endicott, J. A., M. E. Noble, E. F. Garman, N. Brown, B. Rasmussen, P. Nurse, and L. N. Johnson 1995. The crystal structure of p13suc1, a p34cdc2-interacting cell cycle control protein. EMBO J. 14: 1004–1014.
  • Endicott, J. A., and P. Nurse 1995. The cell cycle and suc1: from structure to function? Structure 3: 321–325.
  • Espinoza, F. H., A. Farrell, H. Erdjument-Bromage, P. Tempst, and D. O. Morgan 1996. A cyclin-dependent kinase-activating kinase (CAK) in budding yeast unrelated to vertebrate CAK. Science 273: 1714–1717.
  • Fesquet, D., J. C. Labbé, J. Derancourt, J. P. Capony, S. Galas, F. Girard, T. Lorca, J. Shuttleworth, M. Dorée, and J. C. Cavadore 1993. The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J. 12: 3111–3121.
  • Field, J., J. Nikawa, D. Broek, B. MacDonald, L. Rodgers, I. A. Wilson, R. A. Lerner, and M. Wigler 1988. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol. 8: 2159–2165.
  • Fisher, R. P., P. Jin, H. M. Chamberlin, and D. O. Morgan 1995. Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase. Cell 83: 47–57.
  • Gautier, J., M. J. Solomon, R. N. Booher, J. F. Bazan, and M. W. Kirschner 1991. cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67: 197–211.
  • Glotzer, M., A. W. Murray, and M. W. Kirschner 1991. Cyclin is degraded by the ubiquitin pathway. Nature 349: 132–138.
  • Hadwiger, J. A., C. Wittenberg, M. D. Mendenhall, and S. I. Reed 1989. The Saccharomyces cerevisiae CKS1 gene, a homolog of the Schizosaccharomyces pombe suc1+ gene, encodes a subunit of the Cdc28 protein kinase complex. Mol. Cell. Biol. 9: 2034–2041.
  • Hayles, J., S. Aves, and P. Nurse 1986. Suc1 is an essential gene involved in both the cell cycle and growth in fission yeast. EMBO J. 5: 3373–3379.
  • Hayles, J., D. Beach, B. Durkacz, and P. Nurse 1986. The fission yeast cell cycle control gene cdc2: isolation of a sequence suc1 that suppresses cdc2 mutant function. Mol. Gen. Genet. 202: 291–293.
  • Hershko, A., D. Ganoth, V. Sudakin, A. Dahan, L. H. Cohen, F. C. Luca, J. V. Ruderman, and E. Eytan 1994. Components of a system that ligates cyclin to ubiquitin and their regulation by the protein kinase cdc2. J. Biol. Chem. 269: 4940–4946.
  • Hindley, J., G. Phear, M. Stein, and D. Beach 1987. suc1+ encodes a predicted 13-kilodalton protein that is essential for cell viability and is directly involved in the division cycle of Schizosaccharomyces pombe. Mol. Cell. Biol. 7: 504–511.
  • Jeffrey, P. D., A. A. Russo, K. Polyak, E. Gibbs, J. Hurwitz, J. Massague, and N. P. Pavletich 1995. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376: 313–320.
  • Kaldis, P., A. Sutton, and M. J. Solomon 1996. The Cdk-activating kinase (CAK) from budding yeast. Cell 86: 553–564.
  • King, R. W., R. J. Deshaies, J. M. Peters, and M. W. Kirschner 1996. How proteolysis drives the cell cycle. Science 274: 1652–1659.
  • King, R. W., P. K. Jackson, and M. W. Kirschner 1994. Mitosis in transition. Cell 79: 563–571.
  • King, R. W., J. M. Peters, S. Tugendreich, M. Rolfe, P. Hieter, and M. W. Kirschner 1995. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81: 279–288.
  • Kumagai, A., and W. G. Dunphy 1991. The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system. Cell 64: 903–914.
  • Lahav-Baratz, S., V. Sudakin, J. V. Ruderman, and A. Hershko 1995. Reversible phosphorylation controls the activity of cyclosome-associated cyclin-ubiquitin ligase. Proc. Natl. Acad. Sci. USA 92: 9303–9307.
  • Lew, D. J., and S. Kornbluth 1996. Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr. Opin. Cell Biol. 8: 795–804.
  • Mäkelä, T. P., J.-P. Tassan, E. A. Nigg, S. Frutiger, G. J. Hughes, and R. A. Weinberg 1994. A cyclin associated with the CDK-activating kinase MO15. Nature 371: 254–257.
  • Merle, P., and B. Kadenbach 1980. The subunit composition of mammalian cytochrome c oxidase. Eur. J. Biochem. 105: 499–507.
  • Moreno, S., J. Hayles, and P. Nurse 1989. Regulation of p34cdc2 protein kinase during mitosis. Cell 58: 361–372.
  • Morgan, D. O. 1995. Principles of CDK regulation. Nature 374: 131–134.
  • Murray, A. W., and M. W. Kirschner 1989. Cyclin synthesis drives the early embryonic cell cycle. Nature 339: 275–280.
  • Murray, A. W., M. J. Solomon, and M. W. Kirschner 1989. The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339: 280–286.
  • Nigg, E. A., W. Krek, and M. Peter 1991. Vertebrate cdc2 kinase: its regulation by phosphorylation and its mitotic targets. Cold Spring Harbor Symp. Quant. Biol. 56: 539–547.
  • Patra, D., and W. G. Dunphy 1996. Xe-p9, a Xenopus Suc1/Cks homolog, has multiple essential roles in cell cycle control. Genes Dev. 10: 1503–1515.
  • Peeper, D. S., L. L. Parker, M. E. Ewen, M. Toebes, F. L. Hall, M. Xu, A. Zantema, A. J. van der Eb, and H. Piwnica-Worms 1993. A- and B-type cyclins differentially modulate substrate specificity of cyclin-cdk complexes. EMBO J. 12: 1947–1954.
  • Pines, J. 1996. Cell cycle: reaching for a role for the Cks proteins. Curr. Biol. 6: 1399–1402.
  • Pines, J. 1995. Cyclins and cyclin-dependent kinases: a biochemical view. Biochem. J. 308: 697–711.
  • Poon, R. Y., K. Yamashita, J. P. Adamczewski, T. Hunt, and J. Shuttleworth 1993. The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J. 12: 3123–3132.
  • Richardson, H. E., C. S. Stueland, J. Thomas, P. Russell, and S. I. Reed 1990. Human cDNAs encoding homologs of the small p34Cdc28/Cdc2-associated protein of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Genes Dev. 4: 1332–1344.
  • Russo, A. A., P. D. Jeffrey, and N. P. Pavletich 1996. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat. Struct. Biol. 3: 696–700.
  • Sclafani, R. A. 1996. Cyclin dependent kinase activating kinases. Curr. Opin. Cell Biol. 8: 788–794.
  • Solomon, M. J. 1994. The function(s) of CAK, the p34cdc2-activating kinase. Trends Biochem. Sci. 19: 496–500.
  • Solomon, M. J., M. Glotzer, T. H. Lee, M. Philippe, and M. W. Kirschner 1990. Cyclin activation of p34cdc2. Cell 63: 1013–1024.
  • Solomon, M. J., J. W. Harper, and J. Shuttleworth 1993. CAK, the p34cdc2 activating kinase, contains a protein identical or closely related to p40MO15. EMBO J. 12: 3133–3142.
  • Solomon, M. J., T. Lee, and M. W. Kirschner 1992. Role of phosphorylation in p34cdc2 activation: identification of an activating kinase. Mol. Biol. Cell 3: 13–27.
  • Sudakin, V., D. Ganoth, A. Dahan, H. Heller, J. Hershko, F. C. Luca, J. V. Ruderman, and A. Hershko 1995. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 6: 185–197.
  • Sudakin, V., M. Shteinberg, D. Ganoth, J. Hershko, and A. Hershko 1997. Binding of activated cyclosome to p13suc1: use for affinity purification. J. Biol. Chem. 272: 18051–18059.
  • Tang, Y., and S. I. Reed 1993. The Cdk-associated protein Cks1 functions both in G1 and G2 in Saccharomyces cerevisiae. Genes Dev. 7: 822–832.
  • Tassan, J.-P., M. Jaquenoud, A. M. Fry, S. Frutiger, G. J. Hughes, and E. A. Nigg 1995. In vitro assembly of a functional human CDK7-cyclin H complex requires MAT1, a novel 36 kDa RING finger protein. EMBO J. 14: 5608–5617.
  • Tassan, J.-P., S. J. Schultz, J. Bartek, and E. A. Nigg 1994. Cell cycle analysis of the activity, subcellular localization, and subunit composition of human CAK (CDK-activating kinase). J. Cell Biol. 127: 467–478.
  • Thuret, J.-Y., J.-G. Valay, G. Faye, and C. Mann 1996. Civ1 (CAK in vivo), a novel Cdk-activating kinase. Cell 86: 565–576.
  • Wilson, I. A., H. L. Niman, R. A. Houghten, A. R. Cherenson, M. L. Connolly, and R. A. Lerner 1984. The structure of an antigenic determinant in a protein. Cell 37: 767–778.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.