1
Views
56
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Differential Effects of Protein Kinase A on Ras Effector Pathways

, , , , &
Pages 3718-3726 | Received 17 Dec 1997, Accepted 26 Mar 1998, Published online: 28 Mar 2023

REFERENCES

  • Al-Alawi, N., D. W. Rose, C. Buckmaster, N. Ahn, U. Rapp, J. Meinkoth, and J. R. Feramisco 1995. Thyrotropin-induced mitogenesis is Ras dependent but appears to bypass the Raf-dependent cytoplasmic kinase cascade. Mol. Cell. Biol. 15: 1162–1168.
  • Albright, C. F., B. W. Giddings, J. Liu, M. Vito, and R. A. Weinberg 1993. Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J. 12: 339–347.
  • Altschuler, D. L., S. N. Peterson, M. C. Ostrowski, and E. G. Lapetina 1995. Cyclic AMP-dependent activation of Rap1b. J. Biol. Chem. 270: 10373–10376.
  • Avvedimento, V. E., A. Musti, A. Fusco, M. J. Bonapace, and R. D. Lauro 1988. Neoplastic transformation inactivates specific trans-acting factor(s) required for the expression of the thyroglobulin gene. Proc. Natl. Acad. Sci. USA 85: 1744–1748.
  • Brandi, M. L., C. M. Rotella, C. Mavilia, F. Franceschelli, A. Tanini, and R. Toccafondi 1987. Insulin stimulates cell growth of a new strain of differentiated rat thyroid cells. Mol. Cell. Endocrinol. 54: 91–103.
  • Burgering, B. M. T., and J. L. Bos 1995. Regulation of Ras-mediated signalling: more than one way to skin a cat. Trends Biochem. Sci. 20: 18–22.
  • Burns, J. S., J. P. Blaydes, P. A. Wright, L. Lemoine, J. A. Bond, E. D. Williams, and D. Wynford-Thomas 1992. Stepwise transformation of primary thyroid epithelial cells by a mutant Ha-ras oncogene: an in vitro model of tumor progression. Mol. Carcinog. 6: 129–139.
  • Cantor, S. B., T. Urano, and L. A. Feig 1995. Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Mol. Cell. Biol. 15: 4578–4584.
  • Carrasco, N. 1993. Iodide transport in the thyroid gland. Biochim. Biophys. Acta 1154: 65–82.
  • Cass, L. A., and J. L. Meinkoth 1998. Differential effects of cyclic adenosine 3′, 5′-monophosphate or p70 ribosomal S6 kinase. Endocrinology 139: 1991–1998.
  • Cook, S. J., and F. McCormick 1993. Inhibition by cAMP of Ras-dependent activation of Raf. Science 262: 1059–1062.
  • Dumont, J. E., F. Lamy, P. Roger, and C. Maenhaut 1992. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol. Rev. 72: 667–697.
  • Feramisco, J. R., M. Gross, T. Kamata, M. Rosenberg, and R. W. Sweet 1984. Microinjection of the oncogene form of the human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell 38: 109–117.
  • Frodin, M., P. Peraldi, and E. V. Obberghen 1994. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells. J. Biol. Chem. 269: 6207–6214.
  • Frost, J. A., H. Steen, P. Shapiro, T. Lewis, N. Ahn, P. E. Shaw, and M. H. Cobb 1997. Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J. 16: 6426–6438.
  • Fusco, A., M. T. Berlingieri, P. P. Di Fiore, G. Portella, M. Grieco, and G. Vecchio 1987. One- and two-step transformations of rat thyroid epithelial cells by retroviral oncogenes. Mol. Cell. Biol. 7: 3365–3370.
  • Grammer, T. C., and J. Blenis 1997. Evidence for MEK-independent pathways regulating the prolonged activation of the ERK-MAP kinases. Oncogene 14: 1635–1642.
  • Häfner, S., H. S. Adler, H. Mischak, P. Janosch, G. Heidecker, A. Wolfman, S. Pippig, M. Lohse, M. Ueffing, and W. Kolch 1994. Mechanism of inhibition of Raf-1 by protein kinase A. Mol. Cell. Biol. 14: 6696–6703.
  • Herrmann, C., G. Horn, M. Spaargaren, and A. Wittinghofer 1996. Differential interaction of the Ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J. Biol. Chem. 271: 6794–6800.
  • Heuverswyn, B. V., C. Steydio, H. Brocas, S. Refetoff, J. Dumont, and G. Vassart 1984. Thyrotropin controls transcription of the thyroglobulin gene. Proc. Natl. Acad. Sci. USA 81: 5941–5945.
  • Hofer, F., S. Fields, C. Schneider, and G. S. Martin 1994. Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator. Proc. Natl. Acad. Sci. USA 91: 11089–11093.
  • Ikeda, M., S. Koyama, M. Okazaki, K. Dohi, and A. Kikuchi 1995. rap1 p21 regulates the interaction of ras p21 with RGL, a new effector protein of ras p21. FEBS Lett. 375: 37–40.
  • Jiang, H., J.-Q. Luo, T. Urano, P. Frankel, Z. Lu, D. A. Foster, and L. A. Feig 1995. Involvement of Ral GTPase in v-Src-induced phospholipase D activation. Nature 378: 409–412.
  • Joneson, T., M. A. White, M. H. Wigler, and D. Bar-Sagi 1996. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 271: 810–812.
  • Julien-Flores, V., O. Dorseuil, F. Romero, F. Letourneur, S. Saragosti, R. Berger, A. Tavitian, G. Gacon, and J. H. Camonis 1995. Bridging Ral GTPase to Rho pathways. J. Biol. Chem. 270: 22473–22477.
  • Kauffmann-Zeh, A., P. Rodriguez-Viciana, E. Ulruch, C. Gilbert, P. Coffer, J. Downward, and G. Evan 1997. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385: 544–548.
  • Khosravi-Far, R., P. A. Solski, C. J. Clark, M. S. Kinch, and C. J. Der 1995. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15: 6443–6453.
  • Khosravi-Far, R., M. A. White, J. K. Westwick, P. A. Solski, M. Chrzanowska-Wodnicka, L. V. Aelst, M. H. Wigler, and C. J. Der 1996. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol. Cell. Biol. 16: 3923–3933.
  • Kikuchi, A., S. D. Demo, Z.-H. Ye, Y.-W. Chen, and L. T. Williams 1994. ralGDS family members interact with the effector loop of ras p21. Mol. Cell. Biol. 14: 7483–7491.
  • Kikuchi, A., and L. T. Williams 1996. Regulation of interaction of rasp21 with RalGDS and Raf-1 by cyclic AMP-dependent protein kinase. J. Biol. Chem. 271: 588–594.
  • Kitayama, H., Y. Sugimoto, T. Matsuzaki, Y. Ikawa, and M. Noda 1989. A ras-related gene with transformation suppressor activity. Cell 56: 77–84.
  • Kohn, L. D., H. Shimura, Y. Shimura, A. Hidaka, C. Giuliani, G. Napolitano, M. Ohmori, G. Laglia, and M. Saji 1995. The thyrotropin receptor. Vitam. Horm. 50: 287–385.
  • Kupperman, E., W. Wen, and J. L. Meinkoth 1993. Inhibition of thyrotropin-stimulated DNA synthesis by microinjection of inhibitors of cellular Ras and cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 13: 4477–4484.
  • Kupperman, E., D. Wofford, W. Wen, and J. L. Meinkoth 1996. Ras inhibits thyroglobulin expression but not cyclic adenosine monophosphate-mediated signaling in Wistar rat thyrocytes. Endocrinology 137: 96–104.
  • LaMorte, V., A. Goldsmith, J. Spiegel, J. Meinkoth, and J. Feramisco 1992. Inhibition of DNA synthesis in living cells by microinjection of Gi2 antibodies. J. Biol. Chem. 267: 691–694.
  • Lamy, F., F. Wilkin, M. Baptist, J. Posada, P. P. Roger, and J. E. Dumont 1993. Phosphorylation of mitogen-activated protein kinases is involved in the epidermal growth factor and phorbol ester, but not in the thyrotropin/cAMP, thyroid mitogenic pathway. J. Biol. Chem. 268: 8398–8401.
  • Lemoine, N. R., S. Staddon, J. Bond, F. S. Wyllie, J. J. Shaw, and D. Wynford-Thomas 1990. Partial transformation of human thyroid epithelial cells by mutant Ha-ras oncogene. Oncogene 5: 1833–1837.
  • Magnusson, R. P., and B. Rapoport 1985. Modulation of differentiated function in cultured thyroid cells: thyrotropin control of thyroid peroxidase activity. Endocrinology 116: 1493–1500.
  • Marshall, M. S. 1995. Ras target proteins in eukaryotic cells. FASEB J. 9: 1311–1318.
  • Meinkoth, J. L., J. D. Cruz, and G. N. Burrow 1991. TSH, IGF-1 and activated ras protein induce DNA synthesis in cultured thyroid cells. Thyroidology 3: 97–102.
  • Miller, M. J., S. Prigent, E. Kupperman, L. Rioux, S.-H. Park, J. R. Feramisco, M. A. White, J. L. Rutkowski, and J. L. Meinkoth 1997. RalGDS functions in Ras- and cAMP-mediated growth stimulation. J. Biol. Chem. 272: 5600–5605.
  • Oldham, S. M., G. J. Clark, L. M. Gangarosa, Coffey J. R., Jr. 1996. Activation of the Raf-1/MAP kinase cascade is not sufficient for Ras transformation of RIE-1 epithelial cells. Proc. Natl. Acad. Sci. USA 93: 6924–6928.
  • Park, S.-H., and R. A. Weinberg 1995. A putative effector of Ral has homology to Rho/Rac GTPase activating proteins. Oncogene 11: 2349–2355.
  • Peterson, S. N., L. Trabalzini, T. R. Brtva, T. Fischer, D. L. Altschuler, P. Martelli, E. G. Lapetina, C. J. Der, White G. C., II. 1996. Identification of a novel RalGDS-related protein as a candidate effector for Ras and Rap1. J. Biol. Chem. 271: 29903–29908.
  • Prendergast, G. C., R. Khosravi-Far, P. A. Solski, H. Kurzawa, P. F. Lebowitz, and C. J. Der 1995. Critical role of Rho in cell transformation by oncogenic Ras. Oncogene 10: 2289–2296.
  • Qiu, R.-G., J. Chen, D. Kirn, F. McCormick, and M. Symons 1995. An essential role for Rac in Ras transformation. Nature 374: 457–459.
  • Ramocki, M. B., S. E. Johnson, M. A. White, C. L. Ashendel, S. F. Konieczny, and E. J. Taparowsky 1997. Signaling through mitogen-activated protein kinase and Rac/Rho does not duplicate the effects of activated Ras on skeletal myogenesis. Mol. Cell. Biol. 17: 3547–3555.
  • Rioux, L. Unpublished data.
  • Rodriguez-Viciana, P., P. H. Warne, R. Dhand, B. Vanhaesebroeck, I. Gout, M. J. Fry, M. D. Waterfield, and J. Downward 1994. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370: 527–530.
  • Rodriguez-Viciana, P., P. H. Warne, A. Khwaja, B. M. Marte, D. Pappin, P. Das, M. D. Waterfield, A. Ridley, and J. Downward 1997. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89: 457–467.
  • Scheele, J. S., J. M. Rhee, and G. R. Boss 1995. Determination of the absolute amounts of GDP and GTP bound to Ras in mammalian cells: comparison of parental and Ras-overproducing NIH3T3 fibroblasts. Proc. Natl. Acad. Sci. USA 92: 1097–1100.
  • Self, A. J., and A. Hall 1995. Purification of recombinant Rho/Rac/G25K from Escherichia coli. Methods Enzymol. 256: 3–10.
  • Spaargaren, M., and J. R. Bischoff 1994. Identification of the guanine nucleotide dissociation stimulator for Ral as a putative effector molecule of R-ras, H-ras, and Rap. Proc. Natl. Acad. Sci. USA 91: 12609–12613.
  • Stang, S., D. Bottorff, and J. C. Stone 1997. Interaction of activated Ras with Raf-1 alone may be sufficient for transformation of rat2 cells. Mol. Cell. Biol. 17: 3047–3055.
  • Szeberenyi, J., P. Erhardt, H. Cai, and G. M. Cooper 1992. Role of Ras in signal transduction from the nerve growth factor receptor: relationship to protein kinase C, calcium and cyclic AMP. Oncogene 7: 2105–2113.
  • Tang, Y., Z. Chen, D. Ambrose, J. Liu, J. B. Gibbs, J. Chernoff, and J. Field 1997. Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol. Cell. Biol. 17: 4454–4464.
  • Urano, T., R. Emkey, and L. A. Feig 1996. Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J. 15: 810–816.
  • Vaillancourt, R. R., A. M. Gardner, and G. L. Johnson 1994. B-Raf-dependent regulation of the MEK-1/mitogen-activated protein kinase pathway in PC12 cells and regulation by cyclic AMP. Mol. Cell. Biol. 14: 6522–6530.
  • Vassart, G., and J. E. Dumont 1992. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr. Rev. 13: 596–611.
  • Vossler, M. R., H. Yao, R. D. York, M.-G. Pan, C. S. Rim, and P. J. Stork 1997. cAMP activates MAP kinase and elk-1 through a B-Raf- and Rap1-dependent pathway. Cell 89: 73–82.
  • White, M. A., C. Nicolette, A. Minden, A. Polverino, L. V. Aelst, M. Karin, and M. H. Wigler 1995. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80: 533–541.
  • White, M. A., T. Vale, J. H. Camonis, E. Schaefer, and M. H. Wigler 1996. A role for RalGDS in mediating Ras-induced transformation. J. Biol. Chem. 271: 16439–16442.
  • Wolthuis, R. M. W., B. Bauer, L. J. van’t Veer, A. M. M. de Vries-Smits, R. H. Cool, M. Spaargaren, A. Wittinghofer, B. M. Burgering, and J. L. Bos 1996. RalGDS-like factor (Rlf) is a novel Ras and Rap1A-associating protein. Oncogene 13: 353–362.
  • Wu, J., P. Dent, T. Jelinek, A. Wolfman, M. J. Weber, and T. A. Sturgill 1993. Inhibition of EGF-activated MAP kinase signaling pathway by adenosine 3′5′-monophosphate. Science 262: 1065–1068.
  • Xia, Z., M. Dickens, J. Raingeaud, R. J. Davis, and M. E. Greenberg 1995. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326–1331.
  • Yoshida, Y., M. Kawata, Y. Miura, T. Musha, T. Sasaki, A. Kikuchi, and Y. Takai 1992. Microinjection of smg/rap1/Krev-1 p21 into Swiss 3T3 cells induces DNA synthesis and morphological changes. Mol. Cell. Biol. 12: 3407–3414.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.