6
Views
45
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Even-skipped Represses Transcription by Binding TATA Binding Protein and Blocking the TFIID-TATA Box Interaction

&
Pages 3771-3781 | Received 09 Feb 1998, Accepted 09 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Auble, D. T., K. E. Hansen, C. G. Mueller, W. S. Lane, J. Thorner, and S. Hahn 1994. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev. 8: 1920–1934.
  • Austin, R. J., and M. D. Biggin 1995. A domain of the even-skipped protein represses transcription by preventing TFIID binding to a promoter: repression by cooperative blocking. Mol. Cell. Biol. 15: 4683–4693.
  • Biggin, M. D., and R. Tjian 1989. A purified Drosophila homeodomain protein represses transcription in vitro. Cell 58: 433–440.
  • Chiang, C. M., H. Ge, Z. Wang, A. Hoffmann, and R. G. Roeder 1993. Unique TATA-binding protein-containing complexes and cofactors involved in transcription by RNA polymerases II and III. EMBO J. 12: 2749–2762.
  • Cooper, J. P., S. Y. Roth, and R. T. Simpson 1994. The global transcriptional regulators, SSN6 and TUP1, play distinct roles in the establishment of a repressive chromatin structure. Genes Dev. 8: 1400–1410.
  • Fondell, J. D., F. Brunel, K. Hisatake, and R. G. Roeder 1996. Unliganded thyroid hormone receptor alpha can target TATA-binding protein for transcriptional repression. Mol. Cell. Biol. 16: 281–287.
  • Frasch, M., T. Hoey, C. Rushlow, H. Doyle, and M. Levine 1987. Characterization and localization of the Even-skipped protein of Drosophila. EMBO J. 6: 749–759.
  • Ge, H., and R. G. Roeder 1994. Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class II genes. Cell 78: 513–523.
  • Gray, S., and M. Levine 1996. Transcriptional repression in development. Curr. Opin. Cell Biol. 8: 358–364.
  • Han, K., M. S. Levine, and J. L. Manley 1989. Synergistic activation and repression of transcription by Drosophila homeobox proteins. Cell 56: 573–583.
  • Han, K., and J. L. Manley 1993. Transcriptional repression by the Drosophila Even-skipped protein: definition of a minimal repression domain. Genes Dev. 7: 491–503.
  • Han, K., and J. L. Manley 1993. Functional domains of the Drosophila Engrailed protein. EMBO J. 12: 2723–2733.
  • Hanna-Rose, W., and U. Hansen 1996. Active repression mechanisms of eukaryotic transcription repressors. Trends Genet. 12: 229–234.
  • Hawley, D. K., and R. G. Roeder 1987. Functional steps in transcription initiation and reinitiation from the major late promoter in a HeLa nuclear extract. J. Biol. Chem. 262: 3452–3461.
  • Hecht, A., T. Laroche, S. Strahl-Bolsinger, S. M. Gasser, and M. Grunstein 1995. Histone H3 and H4 termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80: 583–592.
  • Heinzel, T., R. M. Lavinsky, T. M. Mullen, M. Soderstrom, C. D. Laherty, J. Torchia, W. M. Yang, G. Brard, S. D. Ngo, J. R. Davis, E. Seto, R. N. Eisenman, D. W. Rose, C. K. Glass, and M. G. Rosenfeld 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387: 43–48.
  • Herr, W., and M. A. Cleary 1995. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev. 9: 1679–1693.
  • Hirsch, J. A., and A. K. Aggarwal 1995. Structure of the Even-skipped homeodomain complexed to AT-rich DNA: new perspectives on homeodomain specificity. EMBO J. 14: 6280–6291.
  • Hoey, T., R. Warrior, J. Manak, and M. Levine 1988. DNA-binding activities of the Drosophila melanogaster even-skipped protein are mediated by its homeo domain and influenced by protein context. Mol. Cell. Biol. 8: 4598–4607.
  • Jaynes, J. B., and P. H. O’Farrell 1988. Activation and repression of transcription by homeodomain-containing proteins that bind a common site. Nature 336: 744–749.
  • Jimenez, G., Z. Paroush, and D. Ish-Horowicz 1997. Groucho acts as a corepressor for a subset of negative regulators, including Hairy and Engrailed. Genes Dev. 11: 3072–3082.
  • Johnson, A. D. 1995. The price of repression. Cell 81: 655–658.
  • Johnson, F. B., and M. A. Krasnow 1992. Differential regulation of transcription preinitiation complex assembly by activator and repressor homeodomain proteins. Genes Dev. 6: 2177–2189.
  • Kadonaga, J. T. 1990. Assembly and disassembly of the Drosophila RNA polymerase II complex during transcription. J. Biol. Chem. 265: 2624–2631.
  • Kim, S., J. G. Na, M. Hampsey, and D. Reinberg 1997. The Dr1/DRAP1 heterodimer is a global repressor of transcription in vivo. Proc. Natl. Acad. Sci. USA 94: 820–825.
  • Kingston, R. E., C. A. Bunker, and A. N. Imbalzano 1996. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 10: 905–920.
  • Kohtz, J. D., S. F. Jamison, C. L. Will, P. Zuo, R. Lührmann, M. A. Garcia-Blanco, and J. L. Manley 1994. Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 368: 119–124.
  • Levine, M., and J. L. Manley 1989. Transcriptional repression of eukaryotic promoters. Cell 59: 405–408.
  • Licht, J. D., M. Ro, M. A. English, M. Grossel, and U. Hansen 1993. Selective repression of transcriptional activators at a distance by the Drosophila Krüppel protein. Proc. Natl. Acad. Sci. USA 90: 11361–11365.
  • Manley, J. L., M. Um, C. Li, and H. Ashali 1996. Mechanisms of transcriptional activation and repression can both involve TFIID. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351: 517–526.
  • Manoukian, A. S., and H. M. Krause 1992. Concentration-dependent activities of the Even-skipped protein in Drosophila embryos. Genes Dev. 6: 1740–1751.
  • Mermelstein, F., K. Yeung, J. Cao, J. A. Inostroza, H. Erdjument-Bromage, K. Eagelson, D. Landsman, P. Levitt, P. Tempst, and D. Reinberg 1996. Requirement of a corepressor for Dr1-mediated repression of transcription. Genes Dev. 10: 1033–1048.
  • Nagy, L., H. Y. Kao, D. Chakravarti, R. J. Lin, C. A. Hassig, D. E. Ayer, S. L. Schreiber, and R. M. Evans 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89: 373–380.
  • Ohkuma, Y., M. Horikoshi, R. G. Roeder, and C. Desplan 1990. Engrailed, a homeodomain protein, can repress in vitro transcription by competition with the TATA box-binding protein transcription factor IID. Proc. Natl. Acad. Sci. USA 87: 2289–2293.
  • Orlando, V., and R. Paro 1995. Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr. Opin. Genet. Dev. 5: 174–179.
  • Pazin, M. J., and J. T. Kadonaga 1997. What’s up and down with histone deacetylation and transcription? Cell 89: 325–328.
  • Peterson, M. G., N. Tanese, B. F. Pugh, and R. Tjian 1990. Functional domains and upstream activation properties of cloned human TATA binding protein. Science 248: 1625–1630.
  • Pirrotta, V. 1995. Chromatin complexes regulating gene expression in Drosophila. Curr. Opin. Genet. Dev. 5: 466–472.
  • Pugh, B. F., and R. Tjian 1990. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61: 1187–1197.
  • Redd, M. J., M. B. Arnaud, and A. D. Johnson 1997. A complex composed of tup1 and ssn6 represses transcription in vitro. J. Biol. Chem. 272: 11193–11197.
  • Reinberg, D., and R. G. Roeder 1987. Factors involved in specific transcription by mammalian RNA polymerase II. J. Biol. Chem. 262: 3310–3321.
  • Roth, S. Y. 1995. Chromatin-mediated transcriptional repression in yeast. Curr. Opin. Genet. Dev. 5: 168–173.
  • Sauer, F., J. D. Fondell, Y. Ohkuma, R. G. Roeder, and H. Jäckle 1995. Control of transcription by Krüppel through interaction with TFIIB and TFIIE beta. Nature 375: 162–164.
  • Sawadogo, M., and R. G. Roeder 1985. Factors involved in specific transcription by human RNA polymerase II: analysis of a rapid and quantitative in vitro assay. Proc. Natl. Acad. Sci. USA 82: 4394–4398.
  • Song, C. Z., P. M. Loewenstein, K. Toth, Q. Tang, A. Nishikawa, and M. Green 1997. The adenovirus E1A repression domain disrupts the interaction between the TATA binding protein and the TATA box in a manner reversible by FTIIB. Mol. Cell. Biol. 17: 2186–2193.
  • Taggart, A. K., and B. F. Pugh 1996. Dimerization of TFIID when not bound to DNA. Science 272: 1331–1333.
  • TenHarmsel, A., R. J. Austin, N. Savenelli, and M. D. Biggin 1993. Cooperative binding at a distance by even-skipped protein correlates with repression and suggests a mechanism of silencing. Mol. Cell. Biol. 13: 2742–2752.
  • Thut, C. J., J. A. Goodrich, and R. Tjian 1997. Repression of p53-mediated transcription by MDM2: a dual mechanism. Genes Dev. 11: 1974–1986.
  • Tyree, C. M., C. P. George, L. M. Lira-DeVito, S. L. Wampler, M. E. Dahmus, L. Zawel, and J. T. Kadonaga 1993. Identification of a minimal set of proteins that is sufficient for accurate initiation of transcription by RNA polymerase II. Genes Dev. 7: 1254–1265.
  • Um, M., C. Li, and J. L. Manley 1995. The transcriptional repressor Even-skipped interacts directly with TATA-binding protein. Mol. Cell. Biol. 15: 5007–5016.
  • Yeung, K. C., J. A. Inostroza, F. H. Mermelstein, C. Kannabiran, and D. Reinberg 1994. Structure-function analysis of the TBP-binding protein Dr1 reveals a mechanism for repression of class II gene transcription. Genes Dev. 8: 2097–2109.
  • Yeung, K. C., S. Kim, and D. Reinberg 1997. Functional dissection of a human Dr1-DRAP1 repressor complex. Mol. Cell. Biol. 17: 36–45.
  • Zhang, H., K. M. Catron, and C. Abate-Shen 1996. A novel role for the Msx-1 homeodomain in transcriptional regulation: residues in the N-terminal arm mediate TATA binding protein interaction and transcriptional repression. Proc. Natl. Acad. Sci. USA 93: 1764–1769.
  • Zuo, P., D. Stanojevic, J. Colgan, K. Han, M. Levine, and J. L. Manley 1991. Activation and repression of transcription by the gap proteins hunchback and Krüppel in cultured Drosophila cells. Genes Dev. 5: 254–264.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.