12
Views
29
CrossRef citations to date
0
Altmetric
Gene Expression

Differential Requirements for Alternative Splicing and Nuclear Export Functions of Equine Infectious Anemia Virus Rev Protein

, , &
Pages 3889-3899 | Received 20 Feb 1998, Accepted 17 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Beisel, C. E., J. F. Edwards, L. L. Dunn, and N. R. Rice 1993. Analysis of multiple mRNAs from pathogenic equine infectious anemia virus (EIAV) in an acutely infected horse reveals a novel protein, Ttm, derived from the carboxy terminus of the EIAV transmembrane protein. J. Virol. 67: 832–842.
  • Belshan, M., M. E. Harris, A. E. Shoemaker, T. A. Smith, T. J. Hope, and S. Carpenter 1998. Biological characterization of Rev variation in equine infectious anemia virus. J. Virol. 72: 4421–4426.
  • Bogerd, H. P., R. A. Fridell, R. E. Benson, J. Hua, and B. R. Cullen 1996. Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol. Cell. Biol. 16: 4207–4214.
  • Carroll, R., and D. Derse 1993. Translation of equine infectious anemia virus bicistronic tat-rev mRNA requires leaky ribosome scanning of the tat CTG initiation codon. J. Virol. 67: 1433–1440.
  • Chabot, B., M. Blanchette, I. Lapierre, and B. H. La 1997. An intron element modulating 5′ splice site selection in the hnRNP A1 pre-mRNA interacts with hnRNP A1. Mol. Cell. Biol. 17: 1776–1786.
  • Cunningham, B. C., and J. A. Wells 1989. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244: 1081–1085.
  • Derse, D., P. Dorn, L. DaSilva, and L. Martarano 1990. Structure and expression of the equine infectious anemia virus transcriptional trans-activator (tat). Dev. Biol. Stand. 72: 39–48.
  • Duncan, P. I., D. F. Stojdl, R. M. Marius, and J. C. Bell 1997. In vivo regulation of alternative pre-mRNA splicing by the Clk1 protein kinase. Mol. Cell. Biol. 17: 5996–6001.
  • Eberhart, D. E., H. E. Malter, Y. Feng, and S. T. Warren 1996. The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals. Hum. Mol. Genet. 5: 1083–1091.
  • Emerman, M., R. Vazeux, and K. Peden 1989. The rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization. Cell 57: 1155–1165.
  • Felber, B. K., C. M. Drysdale, and G. N. Pavlakis 1990. Feedback regulation of human immunodeficiency virus type 1 expression by the Rev protein. J. Virol. 64: 3734–3741.
  • Felber, B. K., C. M. Hadzopoulou, C. Cladaras, T. Copeland, and G. N. Pavlakis 1989. rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc. Natl. Acad. Sci. USA 86: 1495–1499.
  • Fischer, U., J. Huber, W. C. Boelens, I. W. Mattaj, and R. Luhrmann 1995. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82: 475–483.
  • Fischer, U., M. Sylvie, T. Michael, H. Corinne, L. Reinhard, and R. Guy 1994. Evidence that HIV-1 Rev directly promotes the nuclear export of unspliced RNA. EMBO J. 13: 4106–4112.
  • Fornerod, M., M. Ohno, M. Yoshida, and I. W. Mattaj 1997. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90: 1051–1060.
  • Fridell, R. A., R. E. Benson, J. Hua, H. P. Bogerd, and B. R. Cullen 1996. A nuclear role for the fragile X mental retardation protein. EMBO J. 15: 5408–5414.
  • Fridell, R. A., K. M. Partin, S. Carpenter, and B. R. Cullen 1993. Identification of the activation domain of equine infectious anemia virus rev. J. Virol. 67: 7317–7323.
  • Fritz, C. C., and M. R. Green 1996. HIV Rev uses a conserved cellular protein export pathway for the nucleocytoplasmic transport of viral RNAs. Curr. Biol. 6: 848–854.
  • Fukuda, M., S. Asano, T. Nakamura, M. Adachi, M. Yoshida, M. Yanagida, and E. Nishida 1997. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390: 308–311.
  • Fukuda, M., I. Gotoh, Y. Gotoh, and E. Nishida 1996. Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J. Biol. Chem. 271: 20024–20028.
  • Gontarek, R. R., and D. Derse 1996. Interactions among SR proteins, an exonic splicing enhancer, and a lentivirus Rev protein regulate alternative splicing. Mol. Cell. Biol. 16: 2325–2331.
  • Heaphy, S., C. Dingwall, I. Ernberg, M. J. Gait, S. M. Green, J. Karn, A. D. Lowe, M. Singh, and M. A. Skinner 1990. HIV-1 regulator of virion expression (Rev) protein binds to an RNA stem-loop structure located within the Rev response element region. Cell 60: 685–693.
  • Hope, T. J., B. L. Bond, D. McDonald, N. P. Klein, and T. G. Parslow 1991. Effector domains of human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type 1 Rex are functionally interchangeable and share an essential peptide motif. J. Virol. 65: 6001–6007.
  • Hope, T. J., X. Huang, D. McDonald, and T. Parslow 1990. Steroid-receptor fusion of the human immunodeficiency virus type 1 Rev transactivator: mapping cryptic functions of the arginine-rich motif. Proc. Natl. Acad. Sci. USA 87: 7787–7791.
  • Hope, T. J., D. McDonald, X. Huang, J. Low, and T. G. Parslow 1990. Mutational analysis of the human immunodeficiency virus type 1 Rev transactivator: essential residues near the amino terminus. J. Virol. 64: 5360–5366.
  • Huang, X., T. J. Hope, B. L. Bond, D. McDonald, K. Grahl, and T. G. Parslow 1991. Minimal Rev-response element for type 1 human immunodeficiency virus. J. Virol. 65: 2131–2134.
  • Jumaa, H., and P. J. Nielsen 1997. The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation. EMBO J. 16: 5077–5085.
  • Kim, F. J., A. A. Beeche, J. J. Hunter, D. J. Chin, and T. J. Hope 1996. Characterization of the nuclear export signal of human T-cell lymphotropic virus type 1 Rex reveals that nuclear export is mediated by position-variable hydrophobic interactions. Mol. Cell. Biol. 16: 5147–5155.
  • Kunkel, T. A. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82: 488–492.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zakour 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154: 367–382.
  • Le, S. Y., M. H. Malim, B. R. Cullen, and J. V. Maizel 1990. A highly conserved RNA folding region coincident with the Rev response element of primate immunodeficiency viruses. Nucleic Acids Res. 18: 1613–1623.
  • Lewis, N., J. Williams, D. Rekosh, and M. L. Hammarskjöld 1990. Identification of a cis-acting element in human immunodeficiency virus type 2 (HIV-2) that is responsive to the HIV-1 rev and human T-cell leukemia virus type I and II rex proteins. J. Virol. 64: 1690–1697.
  • Madore, S. J., L. S. Tiley, M. H. Malim, and B. R. Cullen 1994. Sequence requirements for Rev multimerization in vivo. Virology 202: 186–194.
  • Malim, M. H., and B. R. Cullen 1991. HIV-1 structural gene expression requires the binding of multiple rev monomers to the viral RRE: implications for HIV-1 latency. Cell 65: 241–248.
  • Malim, M. H., and B. R. Cullen 1993. Rev and the fate of pre-mRNA in the nucleus: implications for the regulation of RNA processing in eukaryotes. Mol. Cell. Biol. 13: 6180–6189.
  • Malim, M. H., J. Hauber, S. Y. Le, J. V. Maizel, and B. R. Cullen 1989. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338: 254–257.
  • Malim, M. H., D. F. McCarn, L. S. Tiley, and B. R. Cullen 1991. Mutational definition of the human immunodeficiency virus type 1 Rev activation domain. J. Virol. 65: 4248–4254.
  • Malim, M. H., L. S. Tiley, D. F. McCarn, J. R. Rusche, J. Hauber, and B. R. Cullen 1990. HIV-1 structural gene expression requires binding of the Rev trans-activator to its RNA target sequence. Cell 60: 675–683.
  • Mancuso, V. A., T. J. Hope, L. Zhu, D. Derse, T. Phillips, and T. G. Parslow 1994. Posttranscriptional effector domains in the Rev proteins of feline immunodeficiency virus and equine infectious anemia virus. J. Virol. 68: 1998–2001.
  • Martarano, L., R. Stephens, N. Rice, and D. Derse 1994. Equine infectious anemia virus trans-regulatory protein Rev controls viral mRNA stability, accumulation, and alternative splicing. J. Virol. 68: 3102–3111.
  • Meyer, B. E., and M. H. Malim 1994. The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm. Genes Dev. 8: 1538–1547.
  • Meyer, B. E., J. L. Meinkoth, and M. H. Malim 1996. Nuclear transport of human immunodeficiency virus type 1, visna virus, and equine infectious anemia virus rev proteins: identification of a family of transferable nuclear export signals. J. Virol. 70: 2350–2359.
  • Meyer, M. E., H. Gronemeyer, B. Turcotte, M. T. Bocquel, D. Tasset, and P. Chambon 1989. Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 57: 433–442.
  • Murphy, R., and S. R. Wente 1996. An RNA-export mediator with an essential nuclear export signal. Nature 383: 357–360.
  • Noiman, S., A. Yaniv, T. Tsach, T. Miki, S. R. Tronick, and A. Gazit 1991. The Tat protein of equine infectious anemia virus is encoded by at least three types of transcripts. Virology 184: 521–530.
  • Olsen, H. S., S. Beidas, P. Dillon, C. A. Rosen, and A. W. Cochrane 1991. Mutational analysis of the HIV-1 Rev protein and its target sequence, the Rev responsive element. J. Acquired Immune Defic. Syndr. 4: 558–567.
  • Olsen, H. S., A. W. Cochrane, P. J. Dillon, C. M. Nalin, and C. A. Rosen 1990. Interaction of the human immunodeficiency virus type 1 Rev protein with a structured region in env mRNA is dependent on multimer formation mediated through a basic stretch of amino acids. Genes Dev. 4: 1357–1364.
  • Olsen, H. S., P. Nelbock, A. W. Cochrane, and C. A. Rosen 1990. Secondary structure is the major determinant for interaction of HIV rev protein with RNA. Science 247: 845–848.
  • Ossareh, N. B., F. Bachelerie, and C. Dargemont 1997. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278: 141–144.
  • Otero, G. C., M. E. Harris, J. E. Donello, and T. J. Hope. Leptomycin B inhibits export of equine infectious anemia virus Rev and feline immunodeficiency virus Rev but not the function of the hepatitis B virus posttranscriptional regulatory element. Submitted for publication.
  • Palmeri, D., and M. H. Malim 1996. The human T-cell leukemia virus type 1 posttranscriptional trans-activator Rex contains a nuclear export signal. J. Virol. 70: 6442–6445.
  • Perkins, A., A. W. Cochrane, S. M. Ruben, and C. A. Rosen 1989. Structural and functional characterization of the human immunodeficiency virus rev protein. J. Acquired Immune Defic. Syndr. 2: 256–263.
  • Stade, K., C. S. Ford, C. Guthrie, and K. Weis 1997. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90: 1041–1050.
  • Stephens, R. M., D. Derse, and N. R. Rice 1990. Cloning and characterization of cDNAs encoding equine infectious anemia virus tat and putative Rev proteins. J. Virol. 64: 3716–3725.
  • Wen, W., J. L. Meinkoth, R. Y. Tsien, and S. S. Taylor 1995. Identification of a signal for rapid export of proteins from the nucleus. Cell 82: 463–473.
  • Wolff, B., J. J. Sanglier, and Y. Wang 1997. Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem. Biol. 4: 139–147.
  • Zapp, M. L., T. J. Hope, T. G. Parslow, and M. R. Green 1991. Oligomerization and RNA binding domains of the type 1 human immunodeficiency virus Rev protein: a dual function for an arginine-rich binding motif. Proc. Natl. Acad. Sci. USA 88: 7734–7738.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.