3
Views
36
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

DA-Complex Assembly Activity Required for VP16C Transcriptional Activation

, , , , &
Pages 4023-4031 | Received 06 Mar 1998, Accepted 15 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Auble, D. T., K. E. Hansen, C. G. Mueller, W. S. Lane, J. Thorner, and S. Hahn 1994. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev. 8: 1920–1934.
  • Barlev, N. A., R. Candau, L. Wang, P. Darpino, N. Silverman, and S. L. Berger 1995. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J. Biol. Chem. 270: 19337–19344.
  • Berger, S. L., W. D. Cress, A. Cress, S. J. Triezenberg, and L. Guarente 1990. Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors. Cell 61: 1199–1208.
  • Berger, S. L., B. Pina, N. Silverman, G. A. Marcus, J. Agapite, J. L. Regier, S. J. Triezenberg, and L. Guarente 1992. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 70: 251–265.
  • Boyer, T. G., and A. J. Berk 1993. Functional interaction of adenovirus E1A with holo-TFIID. Genes Dev. 7: 1810–1823.
  • Bryant, G. O., L. S. Martel, S. K. Burley, and A. J. Berk 1996. Radical mutations reveal TATA-box binding protein surfaces required for activated transcription in vivo. Genes Dev. 10: 2491–2504.
  • Buratowski, S., S. Hahn, L. Guarente, and P. A. Sharp 1989. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56: 549–561.
  • Chi, T., and M. Carey 1996. Assembly of the isomerized TFIIA-TFIID-TATA ternary complex is necessary and sufficient for gene activation. Genes Dev. 10: 2540–2550.
  • Chi, T., and M. Carey 1993. The ZEBRA activation domain: modular organization and mechanism of action. Mol. Cell. Biol. 13: 7045–7055.
  • Chi, T., P. Lieberman, K. Ellwood, and M. Carey 1995. A general mechanism for transcriptional synergy by eukaryotic activators. Nature 377: 254–257.
  • Chou, S., and K. Struhl 1997. Transcriptional activation by TFIIB mutants that are severely impaired in interaction with promoter DNA and acidic activation domains. Mol. Cell. Biol. 17: 6794–6802.
  • Gadbois, E. L., D. M. Chao, J. C. Reese, M. R. Green, and R. A. Young 1997. Functional antagonism between RNA polymerase II holoenzyme and global negative regulator NC2 in vivo. Proc. Natl. Acad. Sci. USA 94: 3145–3150.
  • Goodrich, J. A., T. Hoey, C. Thut, A. Admon, and R. Tjian 1993. Drosophila TAFII40 interacts with both a VP16 activation domain and basal transcription factor TFIIB. Cell 75: 519–530.
  • Goppelt, A., and M. Meisterernst 1996. Characterization of the basal inhibitor of class II transcription NC2 from Saccharomyces cerevisiae. Nucleic Acids Res. 24: 4450–4455.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2: 1044–1051.
  • Grant, P. A., L. Duggan, J. Cote, S. M. Roberts, J. E. Brownell, R. Candau, R. Ohba, T. Owen-Hughes, C. D. Allis, F. Winston, et al. 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11: 1640–1650.
  • Greenblatt, J. 1997. RNA Polymerase II holoenzyme and transcriptional regulation. Curr. Opin. Cell Biol. 9: 310–319.
  • Guarente, L., R. R. Yocum, and P. Gifford 1982. A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc. Natl. Acad. Sci. USA 79: 7410–7414.
  • Hengartner, C. J., C. M. Thompson, J. Zhang, D. M. Chao, S. M. Liao, A. J. Koleske, S. Okamura, and R. A. Young 1995. Association of an activator with an RNA polymerase II holoenzyme. Genes Dev. 9: 897–910.
  • Herbomel, P., B. Bourachot, and M. Yaniv 1984. Two distinct enhancers with different cell specificities coexist in the regulatory region of polyoma. Cell 39: 653–662.
  • Keveaney, M., A. Berkenstam, M. Feigenbutz, G. Vriend, and H. G. Stunnenberg 1993. Residues in the TATA-binding protein required to mediate a transcriptional response to retinoic acid in EC cells. Nature 365: 562–566.
  • Kim, S., J. G. Na, M. Hampsey, and D. Reinberg 1997. The Dr1/DRAP1 heterodimer is a global repressor of transcription in vivo. Proc. Natl. Acad. Sci. USA 94: 820–825.
  • Kim, T. K., Y. Zhao, H. Ge, R. Bernstein, and R. G. Roeder 1995. TATA-binding protein residues implicated in a functional interplay between negative cofactor NC2 (Dr1) and general factors TFIIA and TFIIB. J. Biol. Chem. 270: 10976–10981.
  • Kim, Y. J., S. Bjorklund, Y. Li, M. H. Sayre, and R. D. Kornberg 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77: 599–608.
  • Klemm, R. D., J. A. Goodrich, S. Zhou, and R. Tijian 1995. Molecular cloning and expression of the 32-kDa subunit of human TFIID reveals interactions with VP16 and TFIIB that mediate transcriptional activation. Proc. Natl. Acad. Sci. USA 92: 5788–5792.
  • Kobayashi, N., T. G. Boyer, and A. J. Berk 1995. A class of activation domains interacts directly with TFIIA and stimulates TFIIA-TFIID-promoter complex assembly. Mol. Cell. Biol. 15: 6465–6473.
  • Koleske, A. J., and R. A. Young 1994. An RNA polymerase II holoenzyme responsive to activators. Nature (London) 368: 466–469.
  • Lee, K. A. W., A. Bindereif, and M. R. Green 1988. A small-scale procedure for the preparation of nuclear extracts that support efficient transcription and pre-mRNA splicing. Gene Anal. Tech. 5: 22–33.
  • Lee, M., and K. Struhl 1997. A severely defective TATA-binding protein-TFIIB interaction does not preclude transcriptional activation in vivo. Mol. Cell. Biol. 17: 1336–1345.
  • Lieberman, P. M., and A. J. Berk 1994. A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID-TFIIA-promoter DNA complex formation. Genes Dev. 8: 995–1006.
  • Lieberman, P. M., J. Ozer, and D. B. Gürsel 1997. Requirement for transcription factor IIA (TFIIA)-TFIID recruitment by an activator depends on promoter structure and template competition. Mol. Cell. Biol. 17: 6624–6632.
  • Lillie, J. W., and M. R. Green 1989. Transcription activation by the adenovirus E1A protein. Nature 338: 39–44.
  • Lin, Y. S., M. F. Carey, M. Ptashne, and M. R. Green 1988. GAL4 derivatives function alone and synergistically with mammalian activators in vitro. Cell 54: 659–664.
  • Mermelstein, F., K. Yeung, J. Cao, J. A. Inostroza, H. Erdjument-Bromage, K. Eagelson, D. Landsman, P. Levitt, P. Tempst, and D. Reinberg 1996. Requirement of a corepressor for Dr1-mediated repression of transcription. Genes Dev. 10: 1033–1048.
  • Nerlov, C., and E. B. Ziff 1995. CCAAT/enhancer binding protein-alpha amino acid motifs with dual TBP and TFIIB binding ability co-operate to activate transcription in both yeast and mammalian cells. EMBO J. 14: 4318–4328.
  • Ozer, J., P. A. Moore, A. H. Bolde, A. Lee, C. A. Rosen, and P. M. Lieberman 1994. Molecular cloning of the small (γ) subunit of human TFIIA reveals functions critical for activated transcription. Genes Dev. 8: 2324–2335.
  • Ptashne, M., and A. Gann 1997. Transcriptional activation by recruitment. Nature 386: 569–577.
  • Radhakrishnan, I., G. C. Paerez-Alvarado, D. Parker, H. J. Dyson, M. R. Montminy, and P. E. Wright 1997. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 6: 741–752.
  • Regier, J. L., F. Shen, and S. J. Triezenberg 1993. Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP16 transcriptional activator. Proc. Natl. Acad. Sci. USA 90: 883–887.
  • Roberts, S. G. E., I. Ha, E. Maldonado, D. Reinberg, and M. R. Green 1993. Interaction between an acidic activator and transcription factor TFIIB is required for transcriptional activation. Nature 363: 741–744.
  • Roeder, R. G. 1996. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21: 327–335.
  • Roizman, B., and A. E. Sears. 1996. Virology, 3rd ed., p. 2231–2296. Lippincott-Raven, Philadelphia, Pa.
  • Sadowski, I., and M. Ptashne 1989. A vector for expressing GAL4(1-147) fusions in mammalian cells. Nucleic Acids Res. 17: 7539.
  • Sheldon, M., and D. Reinberg 1995. Transcriptional activation. Tuning-up transcription. Curr. Biol. 5: 43–46.
  • Shen, F., S. J. Triezenberg, P. Hensley, D. Porter, and J. R. Knutson 1996. Critical amino acids in the activation domain of the herpes virus protein VP16 are solvent-exposed in highly mobile protein segments. J. Biol. Chem. 271: 4819–4826.
  • Stargell, L. A., and K. Struhl 1995. The TBP-TFIIA interaction in the response to acidic activators in vivo. Science 269: 75–78.
  • Stargell, L. A., and K. Struhl 1996. Mechanisms of transcriptional activation in vivo: two steps forward. Trends Genet. 12: 311–315.
  • Stringer, K. F., C. J. Ingles, and J. Greenblatt 1990. An acidic transcriptional activation domain binds directly and selectively to the TATA-box factor. Nature (London) 345: 783–786.
  • Sullivan, S. M., P. J. Horn, V. A. Olson, A. H. Koop, W. Niu, R. H. Ebright, and S. J. Triezenberg. Unpublished data.
  • Sun, X., D. Ma, M. Sheldon, K. Yeung, and D. Reinberg 1994. Reconstitution of human TFIIA activity from recombinant polypeptides: a role in TFIID-mediated transcription. Genes Dev. 8: 2336–2348.
  • Tansey, W. P., and W. Herr 1995. The ability to associate with activation domains in vitro is not required for the TATA-box binding protein to support activated transcription in vivo. Proc. Natl. Acad. Sci. USA 93: 1119–1124.
  • Tjian, R., and T. Maniatis 1994. Transcriptional activation: a complex puzzle with few easy pieces. Cell 77: 5–8.
  • Triezenberg, S. J. 1995. Structure and function of transcriptional activation domains. Curr. Opin. Gen. Dev. 5: 190–196.
  • Uesugi, M., O. Nyanguile, H. Lu, A. J. Levine, and G. L. Verdine 1997. Induced α helix in the VP16 activation domain upon binding to a human TAF. Science 277: 1310–1313.
  • Wang, W., J. D. Gralla, and M. Carey 1992. The acidic activator GAL4-AH can stimulate polymerase II transcription by promoting assembly of a closed complex requiring TFIID and TFIIA. Genes Dev. 6: 1716–1727.
  • Ward, P. L., and B. Roizman 1994. Herpes simplex genes: the blueprint of a successful human pathogen. Trends Genet. 10: 267–274.
  • Wu, Y., R. J. Reece, and M. Ptashne 1996. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J. 15: 3951–3963.
  • Xiao, H., A. Pearson, B. Coulombe, R. Truant, S. Zhang, J. L. Regier, S. J. Triezenberg, D. Reinberg, O. Flores, C. J. Ingles, and J. Greenblatt 1994. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell. Biol. 14: 7013–7024.
  • Yokomori, K., M. P. Zeidler, J.-L. Chen, C. P. Verrijzer, M. Mlodzik, and R. Tjian 1994. Drosophila TFIIA directs cooperative DNA binding with TBP and mediates transcriptional activation. Genes Dev. 8: 2312–2323.
  • Zhou, Q., P. M. Lieberman, T. G. Boyer, and A. J. Berk 1992. Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev. 6: 1964–1974.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.