49
Views
167
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Tyrosine 1101 of Tie2 Is the Major Site of Association of p85 and Is Required for Activation of Phosphatidylinositol 3-Kinase and Akt

, , , , , , & show all
Pages 4131-4140 | Received 04 Dec 1997, Accepted 28 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Ahmed, N. N., H. L. Grimes, A. Bellacosa, T. O. Chan, and P. N. Tsichlis 1997. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl. Acad. Sci. USA 94: 3627–3632.
  • Antonetti, D. A., P. Algenstaedt, and C. R. Kahn 1996. Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain. Mol. Cell. Biol. 16: 2195–2203.
  • Bae, Y. S., L. G. Cantley, C.-S. Chen, S.-R. Kim, K.-S. Kwon, and S. G. Rhee 1998. Activation of phospholipase C-γ by phosphatidylinositol 3,4,5-triphosphate. J. Biol. Chem. 273: 4465–4469.
  • Carpenter, C. L., and L. C. Cantley 1996. Phosphoinositide kinases. Curr. Opin. Cell Biol. 8: 153–158.
  • Chen, H.-C., P. A. Appeddu, H. Isoda, and J.-L. Guan 1996. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J. Biol. Chem. 271: 26329–26334.
  • Crameri, A., E. A. Whitehorn, E. Tate, and P. C. Stemmer 1996. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14: 315–319.
  • Cunningham, S. A., M. N. Waxham, P. M. Arrate, and T. A. Brock 1995. Interaction of the Flt-1 tyrosine kinase receptor with the p85 subunit of phosphatidylinositol 3-kinase: mapping of a novel site involved in binding. J. Biol. Chem. 270: 20254–20257.
  • Damen, J. E., R. L. Cutler, H. Jiao, T. Yi, and G. Krystal 1995. Phosphorylation of tyrosine 503 in the erythropoietin receptor (EpR) is essential for binding the p85 subunit of phosphatidylinositol (PI) 3-kinase and for EpR-associated PI 3-kinase activity. J. Biol. Chem. 270: 23402–23408.
  • Datta, S. R., H. Dudek, X. Tao, S. Masters, H. Fu, Y. Gotoh, and M. E. Greenberg 1997. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241.
  • Davis, S., T. H. Aldrich, P. F. Jones, A. Acheson, D. L. Compton, V. Jain, T. E. Ryan, J. Bruno, C. Radziejewski, P. C. Maisonpierre, and G. D. Yancopoulos 1996. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87: 1161–1169.
  • del Peso, L., M. González-Garcı́a, C. Page, R. Herrera, and G. Nuñez 1997. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278: 687–689.
  • Dubois, N. A., L. C. Kolpack, R. Wang, R. G. Azizkhan, and V. L. Bautch 1991. Isolation and characterization of an established endothelial cell line from transgenic mouse hemangiomas. Exp. Cell Res. 196: 302–313.
  • Dudek, H., S. R. Datta, T. F. Franke, M. J. Birnbaum, R. Yao, G. M. Cooper, R. S. Segal, D. R. Kaplan, and M. E. Greenberg 1997. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275: 661–665.
  • Dumont, D. J., G.-H. Fong, G. Gradwohl, K. Alitalo, and M. L. Breitman 1995. Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev. Dyn. 203: 80–92.
  • Dumont, D. J., G. Gradwohl, G.-H. Fong, M. C. Puri, M. Gertsenstein, A. Auerbach, and M. L. Breitman 1994. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 8: 1897–1909.
  • Dumont, D. J., G. J. Gradwohl, G.-H. Fong, R. Auerbach, and M. L. Breitman 1993. The endothelial-specific receptor tyrosine kinase, tek, is a member of a new subfamily of receptors. Oncogene 8: 1293–1301.
  • Dumont, D. J., T. P. Yamaguchi, R. A. Conlon, J. Rossant, and M. L. Breitman 1992. tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7: 1471–1480.
  • Edgell, C. J. S., C. C. McDonald, and J. B. Graham 1983. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. USA 80: 3734–3737.
  • Estojak, J., R. Brent, and E. A. Golemis 1995. Correlation of two-hybrid affinity data with in vitro measurements. Mol. Cell. Biol. 15: 5820–5829.
  • Fantl, W. J., D. E. Johnson, and L. T. Williams 1993. Signalling by receptor tyrosine kinases. Annu. Rev. Biochem. 62: 453–481.
  • Folkman, J., and P. A. D’Amore 1996. Blood vessel formation: what is its molecular basis? Cell 87: 1153–1155.
  • Golemis, E. A., J. Gyuris, and R. Brent 1995. Interaction trap/two-hybrid system to identify protein interactions Current protocols in molecular biology. In: Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl13.14.1–13.14.17John Wiley and Sons, Inc., New York, N.Y.
  • Gyuris, J., E. Golemis, H. Chertkov, and R. Brent 1993. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75: 791–803.
  • Hanahan, D. 1997. Signaling vascular morphogenesis and maintenance. Science 277: 48–50.
  • Hannon, G. J., D. Demetrick, and D. Beach 1993. Isolation of the Rb-related p130 through its interaction with CDK2 and cyclins. Genes Dev. 7: 2378–2391.
  • Heim, R., A. B. Cubitt, and R. Tsien 1995. Improved green fluorescence. Nature 373: 663–664.
  • Hiles, I. D., M. Otsu, S. Volinia, M. J. Fry, I. Gout, R. Dhand, G. Panayotou, F. Ruiz-Larrea, A. Thompson, N. F. Totty, J. J. Hsuan, S. A. Courtneidge, P. J. Parker, and M. D. Waterfield 1992. Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell 70: 419–429.
  • Holgado-Madruga, M., D. R. Emlet, D. K. Moscatello, A. K. Godwin, and A. J. Wong 1996. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 379: 560–564.
  • Holgado-Madruga, M., D. K. Moscatello, D. R. Emlet, R. Dieterich, and A. J. Wong 1997. Grb2-associated binder-1 mediates phosphatidylinositol 3-kinase activation and the promotion of cell survival by nerve growth factor. Proc. Natl. Acad. Sci. USA 94: 12419–12424.
  • Holt, K. H., A. L. Olson, W. S. Moye-Rowley, and J. E. Pessin 1994. Phosphatidylinositol 3-kinase activation is mediated by high-affinity interactions between distinct domains within the p110 and p85 subunits. Mol. Cell. Biol. 14: 42–49.
  • Huang, L., C. W. Turck, P. Rao, and K. G. Peters 1995. GRB2 and SH-PTP2: potentially important endothelial signaling molecules downstream of the TEK/TIE2 receptor tyrosine kinase. Oncogene 11: 2097–2103.
  • Klippel, A., J. A. Escobedo, M. Hirano, and L. T. Williams 1994. The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol. Cell. Biol. 14: 2675–2685.
  • Klippel, A., W. M. Kavanaugh, D. Pot, and L. T. Williams 1997. A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol. Cell. Biol. 17: 338–344.
  • Klippel, A., C. Reinhard, W. M. Kavanaugh, G. Appel, M.-A. Escobedo, and L. T. Williams 1996. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol. Cell. Biol. 16: 4117–4127.
  • Kontos, C. D., L. Huang, W.-P. Yang, M. Blanar, and K. G. Peters 1996. The p85 subunit of phosphatidylinositol 3′-kinase associates with the endothelium-specific receptor tyrosine kinase Tek. Circulation 94: I–405.
  • Kontos, C. D., L. Huang, and K. G. Peters. 1998. Unpublished data.
  • Kontos, C. D., and K. G. Peters. Unpublished data.
  • Korhonen, J., A. Polvi, J. Partanen, and K. Alitalo 1994. The mouse tie receptor tyrosine kinase gene: expression during embryonic angiogenesis. Oncogene 9: 395–403.
  • Kulik, G., A. Klippel, and M. J. Weber 1997. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol. Cell. Biol. 17: 1595–1606.
  • Lin, P., P. Polverini, M. Dewhirst, S. Shan, P. S. Rao, and K. Peters 1997. Inhibition of tumor angiogenesis using a soluble receptor establishes a role for Tie2 in pathologic vascular growth. J. Clin. Invest. 100: 2072–2078.
  • Liu, L., J. E. Damen, M. Ware, M. Hughes, and G. Krystal 1997. SHIP, a new player in cytokine-induced signalling. Leukemia 11: 181–184.
  • Liu, L., J. E. Damen, M. D. Ware, and G. Krystal 1997. Interleukin-3 induces the association of the inositol 5-phosphatase SHIP with SHP2. J. Biol. Chem. 272: 10998–11001.
  • Maisonpierre, P. C., M. Goldfarb, G. D. Yancopoulos, and G. Gao 1993. Distinct rat genes with related profiles of expression define a TIE receptor tyrosine kinase family. Oncogene 8: 1631–1637.
  • Maisonpierre, P. C., C. Suri, P. F. Jones, S. Bartunkova, S. J. Wiegand, C. Radziejewski, D. Compton, J. McClain, T. H. Aldrich, N. Papadopoulos, T. J. Daly, S. Davis, T. N. Sato, and G. D. Yancopoulos 1997. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277: 55–60.
  • Markowitz, D., S. Goff, and A. Bank 1988. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J. Virol. 62: 1120–1124.
  • Miller, A. D., and G. J. Rosman 1989. Improved retroviral vectors for gene transfer and expression. BioTechniques 7: 980–990.
  • Nguyen, L., M. Holgado-Madruga, C. Maroun, E. D. Fixman, D. Kamikura, T. Fournier, A. Charest, M. L. Tremblay, A. J. Wong, and M. Park 1997. Association of the multisubstrate docking protein Gab1 with the hepatocyte growth factor receptor requires a functional Grb2 binding site involving tyrosine 1356. J. Biol. Chem. 272: 20811–20819.
  • Nishimura, R., W. Li, A. Kashishian, A. Mondino, M. Zhou, J. Cooper, and J. Schlessinger 1993. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor. Mol. Cell. Biol. 13: 6889–6896.
  • Nolte, R. T., E. J. Eck, J. Schlessinger, S. E. Shoelson, and S. C. Harrison 1996. Crystal structure of the PI 3-kinase p85 amino-terminal SH2 domain and its phosphopeptide complexes. Nat. Struct. Biol. 3: 364–374.
  • Peters, K. G., A. Coogan, D. Berry, J. Marks, J. D. Iglehart, C. D. Kontos, P. Rao, S. Sankar, and E. Trogan 1998. Expression of Tie2/Tek in breast tumour vasculature provides a new marker for evaluation of tumour angiogenesis. Br. J. Cancer 77: 51–56.
  • Ponzetto, C., A. Bardelli, F. Maina, P. Longati, G. Panayotou, R. Dhand, M. Waterfield, and P. M. Comoglio 1993. A novel recognition motif for phosphatidylinositol 3-kinase binding mediates its association with the hepatocyte growth factor/scatter factor receptor. Mol. Cell. Biol. 13: 4600–4608.
  • Pullen, N., P. B. Dennis, M. Andjelkovic, A. Dufner, S. C. Kozma, B. A. Hemmings, and G. Thomas 1998. Phosphorylation and activation of p70s6k by PDK1. Science 279: 707–710.
  • Puri, M. C., J. Rossant, K. Alitalo, A. Bernstein, and J. Partanen 1995. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J. 14: 5884–5891.
  • Rameh, L. E., C.-S. Chen, and L. C. Cantley 1995. Phosphatidylinositol (3,4,5)P3 interacts with SH2 domains and modulates PI 3-kinase association with tyrosine-phosphorylated proteins. Cell 83: 821–830.
  • Rordorf-Nikolic, T., D. J. Van Horn, D. Chen, M. F. White, and J. M. Backer 1995. Regulation of phosphatidylinositol 3′-kinase by tyrosyl phosphoproteins: full activation requires occupancy of both SH2 domains in the 85-kDa regulatory subunit. J. Biol. Chem. 270: 3662–3666.
  • Sato, T. N., Y. Tozawa, U. Deutsch, K. Wolburg-Buchholz, Y. Fujiwara, M. Gendron-Maguire, T. Gridley, H. Wolburg, W. Risau, and Y. Qin 1995. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376: 70–74.
  • Schlessinger, J., and A. Ullrich 1992. Growth factor signaling by receptor tyrosine kinases. Neuron 9: 383–391.
  • Skolnik, E. Y., B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger 1991. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65: 83–90.
  • Songyang, Z., S. E. Shoelson, M. Chaudhuri, G. Gish, T. Pawson, W. G. Haser, F. King, T. Roberts, S. Ratnofsky, R. J. Lechleider, B. G. Neel, R. B. Birge, J. E. Fajardo, M. M. Chou, H. Hanafusa, B. Schaffhausen, and L. C. Cantley 1993. SH2 domains recognize specific phosphopeptide sequences. Cell 72: 767–778.
  • Stauffer, T. P., S. Ahn, and T. Meyer 1998. Receptor-induced transient reduction in plasma membrane phosphatidylinositol-4,5 bisphosphate concentration monitored in living cells. Curr. Biol. 8: 343–346.
  • Stauffer, T. P., and T. Meyer 1997. Compartmentalized IgE-receptor-mediated signal transduction in living cells. J. Cell Biol. 139: 1447–1454.
  • Stephens, L., K. Anderson, D. Stokoe, H. Erdjument-Bromage, G. F. Painter, A. B. Holmes, P. R. J. Gaffney, C. B. Reese, F. McCormick, P. Tempst, J. Coadwell, and P. T. Hawkins 1998. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-triphosphate-dependent activation of protein kinase B. Science 279: 710–714.
  • Stokoe, D., L. R. Stephens, T. Copeland, P. R. J. Gaffney, C. B. Reese, G. F. Painter, A. B. Holmes, F. McCormick, and P. T. Hawkins 1997. Dual role of phosphatidylinositol-3,4,5-triphosphate in the activation of protein kinase B. Science 277: 567–570.
  • Stolz, L. E., W. J. Kuo, J. Longchamps, M. K. Sekhon, and J. D. York 1998. INP51, a yeast inositol polyphosphate 5-phosphatase required for phosphatidylinositol 4,5-bisphosphate homeostasis and whose absence confers a cold-resistant phenotype. J. Biol. Chem. 273: 11852–11861.
  • Suri, C., P. F. Jones, S. Patan, S. Bartunkova, P. C. Maisonpierre, S. Davis, T. N. Sato, and G. D. Yancopoulos 1996. Requisite role for angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87: 1171–1180.
  • Teruel, M. N., and T. Meyer 1997. Electroporation induced formation of individual calcium entry sites in cell body and processes of adherent cells. Biophys. J. 73: 1785–1796.
  • van der Geer, P., T. Hunter, and R. A. Lindberg 1994. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu. Rev. Cell Biol. 10: 251–337.
  • Wang, J., K. R. Auger, L. Jarvis, Y. Shi, and T. M. Roberts 1995. Direct association of Grb2 with the p85 subunit of phosphatidylinositol 3-kinase. J. Biol. Chem. 270: 12774–12780.
  • Whitman, M., C. P. Downes, M. Keeler, T. Keller, and L. Cantley 1988. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332: 644–646.
  • Wong, A. L., Z. A. Haroon, S. Werner, M. W. Dewhirst, C. S. Greenberg, and K. G. Peters 1997. Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ. Res. 81: 567–574.
  • Yokoe, H., and T. Meyer 1996. Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nat. Biotechnol. 14: 1252–1256.
  • York, J. D., and P. W. Majerus 1994. Nuclear phosphatidylinositols decrease during S-phase of the cell cycle in HeLa cells. J. Biol. Chem. 269: 7847–7850.
  • Ziegler, S. F., T. A. Bird, J. A. Schneringer, K. A. Schooley, and P. A. Baum 1993. Molecular cloning and characterization of a novel receptor protein tyrosine kinase from human placenta. Oncogene 8: 663–670.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.