18
Views
59
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Cyclin-Dependent Kinase Inhibitor p21 Modulates the DNA Primer-Template Recognition Complex

&
Pages 4177-4187 | Received 09 Mar 1998, Accepted 28 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Bauer, G. A., and P. M. J. Burgers 1988. The yeast analog of mammalian cyclin/proliferating-cell nuclear antigen interacts with mammalian DNA polymerase δ. Proc. Natl. Acad. Sci. USA 85: 7506–7510.
  • Beamish, H., R. Williams, P. Chen, and M. F. Lavin 1996. Defect in multiple cell cycle checkpoints in ataxia-telangiectasia postirradiation. J. Biol. Chem. 271: 20486–20493.
  • Berdis, A. J., and S. J. Benkovic 1997. Mechanism of bacteriophage T4 DNA holoenzyme assembly: the 44/62 protein acts as a molecular motor. Biochemistry 36: 2733–2743.
  • Bravo, R., R. Frank, P. A. Blundell, and H. MacDonald-Bravo 1987. Cyclin/PCNA is the auxiliary protein of DNA polymerase δ. Nature 326: 515–517.
  • Brown, J. P., W. Wei, and J. M. Sedivy 1997. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277: 831–834.
  • Brugarolas, J., C. Chandrasekaran, J. I. Gordon, D. Beach, T. Jacks, and G. J. Hannon 1995. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377: 552–557.
  • Bunz, F., R. Kobayashi, and B. Stillman 1993. cDNAs encoding the large subunit of human replicator factor C. Proc. Natl. Acad. Sci. USA 90: 11014–11018.
  • Burgers, P. M. J. 1991. Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases δ and ɛ. J. Biol. Chem. 266: 22698–22706.
  • Cai, J., F. Uhlmann, E. Gibbs, H. Flores-Rozas, C.-G. Lee, B. Phillips, J. Finkelstein, N. Yao, M. O’Donnell, and J. Hurwitz 1996. Reconstitution of human replication factor C from its five subunits in baculovirus-infected insect cells. Proc. Natl. Acad. Sci. USA 93: 12896–12901.
  • Chen, I.-T., M. Akamatau, M. L. Smith, F.-D. T. Lung, D. Duba, P. P. Roller, Fornace A. J., Jr., and P. M. O’Connor 1996. Characterization of p21Cip1/Waf1 peptide domains required for cyclin E/Cdk2 and PCNA interaction. Oncogene 12: 595–607.
  • Chen, J., S. Chen, P. Saha, and A. Dutta 1996. p21Cip1/Waf1 disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex. Proc. Natl. Acad. Sci. USA 93: 11597–11602.
  • Chen, J., P. K. Jackson, M. W. Kirschner, and A. Dutta 1995. Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature 374: 386–388.
  • Chen, J., P. Saha, S. Kornbluth, B. D. Dynlacht, and A. Dutta 1996. Cyclin-binding motifs are essential for the function of p21CIP1. Mol. Cell. Biol. 16: 4673–4682.
  • Deng, C., P. Zhang, J. W. Harper, S. J. Elledge, and P. Leder 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82: 675–684.
  • Din, S., S. Brill, M. P. Fairman, and B. Stillman 1990. Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev. 4: 968–977.
  • Dulic, V., W. K. Kaufmann, S. J. Wilson, T. D. Tlsty, E. Lees, J. W. Harper, S. J. Elledge, and S. I. Reed 1994. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76: 1013–1023.
  • El-Deiry, W. S., J. W. Harper, P. M. O’Connor, V. E. Velculescu, C. E. Canman, J. Jackman, J. A. Pietenpol, M. Burrell, D. E. Hill, Y. Wang, K. G. Wiman, W. E. Mercer, M. B. Kastan, K. W. Kohn, S. J. Elledge, K. W. Kinzler, and B. Vogelstein 1994. WAF1/CIP1 in induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54: 1169–1174.
  • El-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.
  • Ellison, V., and B. Stillman 1998. Reconstitution of recombinant human replication factor C (RFC) and identification of an RFC subcomplex possessing DNA-dependent ATPase activity. J. Biol. Chem. 273: 5979–5987.
  • Fan, Z., Y. Lu, X. Wu, A. DeBlasio, A. Koff, and J. Mendelsohn 1995. Prolonged induction of p21Cip1/WAF1/CDK2/PCNA complex by epidermal growth factor receptor activation mediates ligand-induced A431 cell growth inhibition. J. Cell Biol. 131: 235–242.
  • Fien, K., and B. Stillman 1992. Identification of replication factor C from Saccharomyces cerevisiae: a component of the leading-strand DNA replication complex. Mol. Cell. Biol. 12: 155–163.
  • Flores-Rozas, H., Z. Kelman, F. B. Dean, Z.-Q. Pan, J. W. Harper, S. J. Elledge, M. O’Donnell, and J. Hurwitz 1994. Cdk-interacting protein 1 directly binds with proliferating cell nuclear antigen and inhibits DNA replication catalyzed by the DNA polymerase δ holoenzyme. Proc. Natl. Acad. Sci. USA 91: 8655–8659.
  • Fotedar, R., P. Fitzgerald, T. Rousselle, D. Cannella, M. Doree, H. Messier, and A. Fotedar 1996. p21 contains independent binding sites for cyclin and cdk2: both sites are required to inhibit cdk2 kinase activity. Oncogene 12: 2155–2164.
  • Fukuda, K., H. Morioka, S. Imajou, S. Ikeda, E. Ohtsuka, and T. Tsurimoto 1995. Structure-function relationship of the eukaryotic DNA replication factor, proliferating cell nuclear antigen. J. Biol. Chem. 270: 22527–22534.
  • Funk, J. O., S. Waga, J. B. Harry, E. Espling, B. Stillman, and D. A. Galloway 1997. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 11: 2090–2100.
  • Gibbs, E., Z. Kelman, J. M. Gulbis, M. O’Donnell, J. Kuriyan, P. M. J. Burgers, and J. Hurwitz 1997. The influence of the proliferating cell nuclear antigen-interacting domain of p21CIP1 on DNA synthesis catalyzed by the human and Saccharomyces cerevisiae polymerase δ holoenzymes. J. Biol. Chem. 272: 2373–2381.
  • Goubin, F., and B. Ducommun 1995. Identification of binding domains on the p21Cip1 cyclin-dependent kinase inhibitor. Oncogene 10: 2281–2287.
  • Gulbis, J. M., Z. Kelman, J. Hurwitz, M. O’Donnell, and J. Kuriyan 1996. Structure of the C-terminal region of p21WAF1/CIP1 complexed with human PCNA. Cell 87: 297–306.
  • Halevy, O., B. G. Novitch, D. B. Spicer, S. X. Skapek, J. Rhee, G. J. Hannon, D. Beach, and A. B. Lassar 1995. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267: 1018–1021.
  • Harper, J. W., S. J. Elledge, K. Keyomarsi, B. Dynlacht, L. Tasi, P. Zhang, S. Dobrorolski, C. Bai, L. Connell-Crowley, E. Swindell, M. P. Fox, and N. Wei 1995. Inhibition of cyclin-dependent kinases by p21. Mol. Biol. Cell 6: 387–400.
  • Henricksen, L. A., C. B. Umbricht, and M. S. Wold 1994. Recombinant replication protein A: expression, complex formation, and functional characterization. J. Biol. Chem. 269: 11121–11132.
  • Hübscher, U., G. Maga, and V. N. Podust 1996. DNA replication accessory proteins DNA replication in eukaryotic cells. In: DePamphilis, M. L.525–543Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Jones, D. L., R. M. Alani, and K. Münger 1997. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 11: 2101–2111.
  • Kelman, Z. 1997. PCNA: structure, functions and interactions. Oncogene 14: 629–640.
  • Krishna, T. S. R., X.-P. Kong, S. Gary, P. M. Burgers, and J. Kuriyan 1994. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79: 1233–1243.
  • Kriwacki, R. W., L. Hengst, L. Tennant, S. I. Reed, and P. E. Wright 1996. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc. Natl. Acad. Sci. USA 93: 11504–11509.
  • LaBaer, J., M. D. Garrett, L. F. Stevenson, J. M. Slingerland, C. Sandhu, H. S. Chou, A. Fattaey, and E. Harlow 1997. New functional activities for the p21 family of CDK inhibitors. Genes Dev. 11: 847–862.
  • Lee, S.-H., and J. Hurwitz 1990. Mechanism of elongation of primed DNA by DNA polymerase δ, proliferating cell nuclear antigen, and activator 1. Proc. Natl. Acad. Sci. USA 87: 5672–5676.
  • Li, R., G. J. Hannon, D. Beach, and B. Stillman 1996. Subcellular distribution of p21 and PCNA in normal and repair-deficient cells following DNA damage. Curr. Biol. 6: 189–199.
  • Li, R., S. Waga, G. Hanon, D. Beach, and B. Stillman 1994. Differential effects by the p21 CDK inhibitor on PCNA dependent DNA replication and DNA repair. Nature 371: 534–537.
  • Li, X., J. Li, J. Harrington, M. R. Lieber, and P. M. J. Burgers 1995. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J. Biol. Chem. 270: 22109–22112.
  • Li, Y., C. W. Jenkins, M. A. Nichols, and Y. Xiong 1994. Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 9: 2261–2268.
  • Lin, J., C. Reichner, X. Wu, and A. J. Levine 1996. Analysis of wild-type and mutant p21WAF-1 gene activities. Mol. Cell. Biol. 16: 1786–1793.
  • Luo, Y., J. Hurwitz, and J. Massague 1995. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 375: 159–161.
  • Macleod, J. F., N. Sherry, G. Hannon, D. Beach, T. Tokino, K. Kinzler, B. Vogelstein, and T. Jacks 1995. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 9: 935–944.
  • Michieli, P., M. Chedid, D. Lin, J. H. Pierce, W. E. Mercer, and D. Givol 1994. Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res. 54: 3391–3395.
  • Nakanishi, M., R. S. Robetorye, G. R. Adami, O. M. Pereira-Smith, and J. R. Smith 1995. Identification of the active region of the DNA synthesis inhibitory gene p21Sdi1/CIP1/WAF1. EMBO J. 14: 555–563.
  • Nakanishi, M., R. S. Robetorye, O. M. Pereira-Smith, and J. R. Smith 1995. The C-terminal region of p21SDI1/WAF1/CIP1 is involved in proliferating cell nuclear antigen binding but does not appear to be required for growth inhibition. J. Biol. Chem. 270: 17060–17063.
  • Pan, Z.-Q., M. Chen, and J. Hurwitz 1993. The subunits of activator 1 (replication factor C) carry out multiple functions essential for proliferating-cell nuclear antigen-dependent DNA synthesis. Proc. Natl. Acad. Sci. USA 90: 6–10.
  • Pan, Z.-Q., J. T. Reardon, L. Li, H. Flores-Rozas, R. Legerski, A. Sancar, and J. Hurwitz 1995. Inhibition of nucleotide excision repair by the cyclin-dependent kinase inhibitor p21. J. Biol. Chem. 270: 22008–22016.
  • Parker, S. B., G. Eichele, P. Zhang, A. Rawls, A. T. Sands, A. Bradley, E. N. Olson, J. W. Harper, and S. J. Elledge 1995. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267: 1024–1027.
  • Paulovich, A. G., and L. H. Hartwell 1995. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82: 841–847.
  • Podust, V. N., and E. Fanning 1997. Assembly of functional replication factor C expressed using recombinant baculoviruses. J. Biol. Chem. 272: 6303–6310.
  • Podust, V. N., L. M. Podust, F. Goubin, B. Ducommun, and U. Hübscher 1995. Mechanism of inhibition of proliferating cell nuclear antigen-dependent DNA synthesis by the cyclin-dependent kinase inhibitor p21. Biochemistry 34: 8869–8875.
  • Prelich, G., and B. Stillman 1988. Coordinated leading and lagging strand synthesis during SV40 DNA replication in vitro requires PCNA. Cell 53: 117–126.
  • Prelich, G., C. K. Tan, M. Kostura, M. B. Mathews, A. G. So, K. M. Downey, and B. Stillman 1987. Functional identity of proliferating cell nuclear antigen and a DNA polymerase δ auxiliary protein. Nature 326: 517–520.
  • Roos, G., Y. Jiang, G. Landberg, N. H. Nielsen, P. Zhang, and M. Y. W. T. Lee 1996. Determination of the epitope of an inhibitory antibody to proliferating cell nuclear antigen. Exp. Cell Res. 226: 208–213.
  • Russo, A. A., P. D. Jeffrey, A. K. Patten, J. Massague, and N. P. Pavletich 1996. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382: 325–331.
  • Sherr, C. J. 1996. Cancer cell cycles. Science 274: 1672–1677.
  • Sherr, C. J., and J. M. Roberts 1995. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9: 1149–1163.
  • Shim, J., H. Lee, J. Park, H. Kim, and E.-J. Choi 1996. A non-enzymatic p21 protein inhibitor of stress-activated protein kinases. Nature 381: 804–807.
  • Shivji, M. K. K., S. J. Grey, U. P. Strausfeld, R. D. Wood, and J. J. Blow 1994. Cip1 inhibits DNA replication but not PCNA-dependent nucleotide excision-repair. Curr. Biol. 4: 1062–1068.
  • Sugimoto, K., T. Shimomura, K. Hashimoto, H. Araki, A. Sugino, and K. Matsumoto 1996. Rfc5, a small subunit of replication factor C complex, couples DNA replication and mitosis in budding yeast. Proc. Natl. Acad. Sci. USA 93: 7048–7052.
  • Svoboda, D. L., and J.-M. H. Vox 1995. Differential replication of a single, UV-induced lesion in the leading or lagging strand by a human cell extract: fork uncoupling or gap formation. Proc. Natl. Acad. Sci. USA 92: 11975–11979.
  • Tahara, H., E. Sato, A. Noda, and T. Ide 1995. Increase in expression level of p21sdi1/cip1/waf1 with increasing division age in both normal and SV40-transformed human fibroblasts. Oncogene 10: 835–840.
  • Tan, C. K., C. Castillo, A. G. So, and K. M. Downey 1986. An auxiliary protein for DNA polymerase-δ from fetal calf thymus. J. Biol. Chem. 261: 12310–12316.
  • Tsurimoto, T., T. Melendy, and B. Stillman 1990. Sequential initiation of lagging and leading strand synthesis by two DNA polymerase complexes at the SV40 DNA replication origin. Nature 346: 534–539.
  • Tsurimoto, T., and B. Stillman 1989. Purification of a cellular replication factor, RF-C, that is required for coordinated synthesis of leading and lagging strands during simian virus 40 DNA replication in vitro. Mol. Cell. Biol. 9: 609–619.
  • Tsurimoto, T., and B. Stillman 1990. Functions of replication factor C and proliferating cell nuclear antigen: functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4. Proc. Natl. Acad. Sci. USA 87: 1023–1027.
  • Tsurimoto, T., and B. Stillman 1991. Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory factors. J. Biol. Chem. 266: 1950–1960.
  • Tsurimoto, T., and B. Stillman 1991. Replication factors required for SV40 DNA replication in vitro. II. Switching of DNA polymerase α and δ during initiation of leading and lagging strand synthesis. J. Biol. Chem. 266: 1961–1968.
  • Waga, S., G. J. Hannon, D. Beach, and B. Stillman 1994. The p21 cyclin dependent kinase inhibitor directly controls DNA replication via interaction with PCNA. Nature 369: 574–578.
  • Waga, S., and B. Stillman 1994. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369: 207–212.
  • Waga, S., and B. Stillman. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem., in press.
  • Warbrick, E., D. P. Lane, D. M. Glover, and L. S. Cox 1995. A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen. Curr. Biol. 5: 275–282.
  • Waseem, N. H., and D. P. Lane 1990. Monoclonal antibody analysis of the proliferating cell nuclear antigen (PCNA). Structural conservation and the detection of a nucleolar form. J. Cell Sci. 96: 121–129.
  • Xiong, Y., H. Zhang, and D. Beach 1992. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71: 505–514.
  • Xiong, Y., H. Zhang, and D. Beach 1993. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev. 7: 1572–1583.
  • Zhang, H., G. J. Hannon, and D. Beach 1994. p21-containing cyclin kinases exist in both active and inactive states. Genes Dev. 8: 1750–1758.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.