15
Views
180
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Activated Polo-Like Kinase Plx1 Is Required at Multiple Points during Mitosis in Xenopus laevis

, , &
Pages 4262-4271 | Received 26 Jan 1998, Accepted 21 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Amon, A., U. Surana, I. Muroff, and K. Nasmyth 1992. Regulation of p34CDC28 tyrosine phosphorylation is not required for entry into mitosis in S. cerevisiae. Nature 355: 368–371.
  • Dasso, M., and J. W. Newport 1990. Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus. Cell 61: 811–823.
  • Davis, F. M., T. Y. Tsao, S. K. Fowler, and P. N. Rao 1983. Monoclonal antibodies to mitotic cells. Proc. Natl. Acad. Sci. USA 80: 2926–2930.
  • Dunphy, W. G., and A. Kumagai 1991. The cdc25 protein contains an intrinsic phosphatase activity. Cell 67: 189–196.
  • Edgar, B. A., D. A. Lehman, and P. H. O’Farrell 1994. Transcriptional regulation of string (cdc25): a link between developmental programming and the cell cycle. Development 120: 3131–3143.
  • Elledge, S. J. 1996. Cell cycle checkpoints: preventing an identity crisis. Science 274: 1664–1672.
  • Enoch, T., and P. Nurse 1991. Coupling M phase and S phase: controls maintaining the dependence of mitosis on chromosome replication. Cell 65: 921–923.
  • Fenton, B., and D. M. Glover 1993. A conserved mitotic kinase active at late anaphase-telophase in syncytial Drosophila embryos. Nature 363: 637–640.
  • Ferrell, J. E.Jr., M. Wu, J. C. Gerhart, and G. S. Martin 1991. Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol. Cell. Biol. 11: 1965–1971.
  • Furnari, B., N. Rhind, and P. Russell 1997. Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science 277: 1495–1497.
  • Gard, D. L., S. Hafezi, T. Zhang, and S. J. Doxsey 1990. Centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle. J. Cell Biol. 110: 2033–2042.
  • Gautier, J., T. Matsukawa, P. Nurse, and J. Maller 1989. Dephosphorylation and activation of Xenopus p34cdc2 protein kinase during the cell cycle. Nature 339: 626–629.
  • Gautier, J., M. J. Solomon, R. N. Booher, J. F. Bazan, and M. W. Kirschner 1991. cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67: 197–211.
  • Glover, D. M., H. Ohkura, and A. Tavares 1996. Polo kinase: the choreographer of the mitotic stage? J. Cell Biol. 135: 1681–1684.
  • Golsteyn, R. M., K. E. Mundt, A. M. Fry, and E. A. Nigg 1995. Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J. Cell Biol. 129: 1617–1628.
  • Gould, K. L., and P. Nurse 1989. Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342: 39–45.
  • Hamanaka, R., M. R. Smith, P. M. O’Connor, S. Maloid, K. Mihalic, J. L. Spivak, D. L. Longo, and D. K. Ferris 1995. Polo-like kinase is a cell cycle-regulated kinase activated during mitosis. J. Biol. Chem. 270: 21086–21091.
  • Harlow, E., and D. Lane 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hartley, R. S., R. E. Rempel, and J. L. Maller 1996. In vivo regulation of the early embryonic cell cycle in Xenopus. Dev. Biol. 173: 408–419.
  • Hartwell, L. H., and T. A. Weinert 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246: 629–634.
  • Hoffmann, I., P. R. Clarke, M. J. Marcote, E. Karsenti, and G. Draetta 1993. Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12: 53–63.
  • Holloway, S. L., M. Glotzer, R. W. King, and A. W. Murray 1993. Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 73: 1393–1402.
  • Izumi, T., and J. L. Maller 1993. Elimination of cdc2 phosphorylation sites in the cdc25 phosphatase blocks initiation of M-phase. Mol. Biol. Cell 4: 1337–1350.
  • Izumi, T., and J. L. Maller 1995. Phosphorylation and activation of the Xenopus Cdc25 phosphatase in the absence of Cdc2 and Cdk2 kinase activity. Mol. Biol. Cell 6: 215–226.
  • Izumi, T., D. H. Walker, and J. L. Maller 1992. Periodic changes in phosphorylation of the Xenopus cdc25 phosphatase regulate its activity. Mol. Biol. Cell 3: 927–939.
  • Kornbluth, S., B. Sebastian, T. Hunter, and J. Newport 1994. Membrane localization of the kinase which phosphorylates p34cdc2 on threonine 14. Mol. Biol. Cell 5: 273–282.
  • Kuang, J., and C. L. Ashorn 1993. At least two kinases phosphorylate the MPM-2 epitope during Xenopus oocyte maturation. J. Cell Biol. 123: 859–868.
  • Kuang, J., C. L. Ashorn, M. Gonzalez-Kuyvenhoven, and J. E. Penkala 1994. cdc25 is one of the MPM-2 antigens involved in the activation of maturation-promoting factor. Mol. Biol. Cell 5: 135–145.
  • Kumagai, A., and W. G. Dunphy 1991. The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system. Cell 64: 903–914.
  • Kumagai, A., and W. G. Dunphy 1996. Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273: 1377–1380.
  • Kumagai, A., and W. G. Dunphy 1992. Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell 70: 139–151.
  • Lane, H. A., and E. A. Nigg 1996. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol. 135: 1701–1713.
  • Lane, H. A., and E. A. Nigg 1997. Cell-cycle control: POLO-like kinases join the outer circle. Trends Cell Biol. 7: 63–68.
  • Langan, T. A., J. Gautier, M. Lohka, R. Hollingsworth, S. Moreno, P. Nurse, J. Maller, and R. A. Sclafani 1989. Mammalian growth-associated H1 histone kinase: a homolog of cdc2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells. Mol. Cell. Biol. 9: 3860–3868.
  • Lee, K. S., and R. L. Erikson 1997. Plk is a functional homolog of Saccharomyces cerevisiae Cdc5, and elevated Plk activity induces multiple septation structures. Mol. Cell. Biol. 17: 3408–3417.
  • Lee, K. S., Y. L. Yuan, R. Kuriyama, and R. L. Erikson 1995. Plk is an M-phase-specific protein kinase and interacts with a kinesin-like protein, CHO1/MKLP-1. Mol. Cell. Biol. 15: 7143–7151.
  • Lee, M. S., S. Ogg, M. Xu, L. L. Parker, D. J. Donoghue, J. L. Maller, and H. Piwnica-Worms 1992. cdc25+ encodes a protein phosphatase that dephosphorylates p34cdc2. Mol. Biol. Cell 3: 73–84.
  • Lew, D. J., and S. I. Reed 1995. A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J. Cell Biol. 129: 739–749.
  • Llamazares, A., A. Moreira, A. Tavares, C. Girdam, B. A. Spruce, C. Gonzales, R. E. Karess, D. M. Glover, and C. E. Sunkel 1991. polo encodes a protein kinase homolog required for mitosis in Drosophila. Genes Dev. 5: 2153–2165.
  • Matten, W. T., T. D. Copeland, N. G. Ahn, and G. F. Vande Woude 1996. Positive feedback between MAP kinase and Mos during Xenopus oocyte maturation. Dev. Biol. 179: 485–492.
  • Moreno, S., P. Nurse, and P. Russell 1990. Regulation of mitosis by cyclic accumulation of p80Cdc25 mitotic inducer in fission yeast. Nature 344: 549–552.
  • Mueller, P. R., T. R. Coleman, A. Kumagai, and W. G. Dunphy 1995. Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 270: 86–90.
  • Murray, A. W., M. J. Solomon, and M. W. Kirschner 1989. The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339: 280–286.
  • Ohkura, H., I. M. Hagan, and D. M. Glover 1995. The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev. 9: 1059–1073.
  • Parker, L. L., S. Atherton-Fessler, and H. Piwnica-Worms 1992. p107wee1 is a dual-specificity kinase that phosphorylates p34cdc2 on tyrosine 15. Proc. Natl. Acad. Sci. USA 89: 2917–2921.
  • Parker, L. L., S. A. Walter, P. G. Young, and H. Piwnica-Worms 1993. Phosphorylation and inactivation of the mitotic inhibitor Wee1 by the nim1/cdr1 kinase. Nature 363: 736–738.
  • Peng, C. Y., P. R. Graves, R. S. Thoma, Z. Wu, A. S. Shaw, and H. Piwnica-Worms 1997. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277: 1501–1505.
  • Roy, L. M., O. Haccard, T. Izumi, B. G. Lattes, A. L. Lewellyn, and J. L. Maller 1996. Mos proto-oncogene function during oocyte maturation in Xenopus. Oncogene 12: 2203–2211.
  • Sagata, N., M. Oskarsson, T. Copeland, J. Brumbaugh, and G. F. Vande Woude 1988. Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 335: 519–525.
  • Sagata, N., N. Watanabe, G. F. Vande Woude, and Y. Ikawa 1989. The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature 342: 512–518.
  • Sanchez, Y., C. Wong, R. S. Thoma, R. Richman, Z. Wu, H. Piwnica-Worms, and S. J. Elledge 1997. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277: 1497–1501.
  • Smythe, C., and J. W. Newport 1992. Coupling of mitosis to the completion of S phase in Xenopus occurs via modulation of the tyrosine kinase that phosphorylates p34cdc2. Cell 68: 787–797.
  • Taagepera, S., P. Dent, J. H. Her, T. W. Sturgill, and G. J. Gorbsky 1994. The MPM-2 antibody inhibits mitogen-activated protein kinase activity by binding to an epitope containing phosphothreonine-183. Mol. Biol. Cell 5: 1243–1251.
  • Tang, Z., T. R. Coleman, and W. G. Dunphy 1993. Two distinct mechanisms for negative regulation of the Wee1 protein kinase. EMBO J. 12: 3427–3436.
  • Tavares, A. A., D. M. Glover, and C. E. Sunkel 1996. The conserved mitotic kinase polo is regulated by phosphorylation and has preferred microtubule-associated substrates in Drosophila embryo extracts. EMBO J. 15: 4873–4883.
  • Vandre, D. D., F. M. Davis, P. N. Rao, and G. G. Borisy 1986. Distribution of cytoskeletal proteins sharing a conserved phosphorylated epitope. Eur. J. Cell Biol. 41: 72–81.
  • Westendorf, J. M., P. N. Rao, and L. Gerace 1994. Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope. Proc. Natl. Acad. Sci. USA 91: 714–718.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.