27
Views
85
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Calcium and S100B Regulation of p53-Dependent Cell Growth Arrest and Apoptosis

, , , &
Pages 4272-4281 | Received 11 Feb 1998, Accepted 20 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Allore, R., D. O’Hanlon, R. Price, K. Neilson, H. F. Willard, D. R. Cox, A. Marks, and R. J. Dunn 1988. Gene encoding the β-subunit of S100 protein is on chromosome 21: implication for Down syndrome. Science 239: 1311–1313.
  • Aloni-Grinstein, R., D. Schwartz, and V. Rotter 1995. Accumulation of wild-type p53 protein upon γ-irradiation induces a G2 arrest-dependent immunoglobulin κ light chain gene expression. EMBO J. 14: 1392–1401.
  • Artuso, M., A. Esteve, H. Brésil, M. Vuillaume, and J. Hall 1995. The role of the Ataxia telangiectasia gene in the p53, WAF1/CIP1 (p21) and GADD45-mediated response to DNA damage produced by ionising radiation. Oncogene 11: 1427–1435.
  • Asai, A., Y. Miyagi, A. Sugiyama, M. Gamanuma, S. I. Hong, S. Takamoto, K. Nomura, M. Matsutani, K. Takakura, and Y. Kuchino 1994. Negative effects of wild-type p53 and s-Myc on cellular growth and tumorigenicity of glioma cells. J. Neuro-Oncol. 19: 259–268.
  • Barak, Y., T. Juven, R. Haffner, and M. Oren 1993. mdm2 expression is induced by wild type p53 activity. EMBO J. 12: 461–468.
  • Baudier, J., N. Glasser, and D. Gérard 1986. Ions binding to S100 protein. Calcium and zinc-binding properties of bovine brain S100αα, S100a (αβ), and S100B (ββ) protein: Zn2+ regulates Ca2+ binding on S100B protein. J. Biol. Chem. 261: 8192–8203.
  • Baudier, J., D. Mochly-Rosen, A. Newton, S. H. Lee, D. E. Koshland, and R. D. Cole 1987. Comparison of S100b protein with calmodulin: interactions with melitin and microtubule-associated τ proteins and inhibition of phosphorylation of τ proteins by protein kinase C. Biochemistry 26: 2886–2893.
  • Baudier, J., E. Bergeret, N. Bertacchi, H. Weintraub, J. Gagnon, and J. Garin 1995. Interactions of myogenic bHLH transcription factors with calcium-binding calmodulin and S100a (αα) proteins. Biochemistry 34: 7834–7846.
  • Baudier, J., C. Delphin, D. Grunwald, S. Khoshbin, and J. J. Lawrence 1992. Characterization of the tumor suppressor protein p53 as a protein kinase C substrate and a S100B-binding protein. Proc. Natl. Acad. Sci. USA 89: 11627–11631.
  • Bonfoco, E., D. Krainc, M. Ankarcrona, P. Nicotera, and S. A. Lipton 1995. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxyde/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92: 7162–7166.
  • Caelles, C., A. Heimberg, and M. Karim 1994. p53 dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370: 220–224.
  • Chen, X., L. J. Ko, L. Jayaraman, and C. Prive 1996. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10: 2438–2451.
  • Coppolino, M., M. J. Woodside, N. Demaurex, S. Grinstein, R. St-Arnaud, and S. Dedhar 1997. Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 286: 843–847.
  • Delphin, C., and J. Baudier 1994. The protein kinase C activator, phorbol ester, cooperates with the wild-type p53 species of ras-transformed embryo fibroblasts growth arrest. J. Biol. Chem. 269: 29579–29587.
  • Dolmetsch, R. E., R. S. Lewis, C. C. Goodnow, and J. I. Healy 1997. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 286: 855–858.
  • El-Deiry, W. S., T. Tokino, V. E. Velculenscu, D. B. Levy, R. Parson, J. M. Trent, D. Lin, E. W. Mercer, K. W. Kinzler, and B. Vogelstein 1993. WAF1, a potential mediator of p53 tumour suppression. Cell 75: 817–825.
  • Fano, G., M. A. Mariggio, P. Angelella, I. Nicoletti, A. Antonica, S. Fulle, and P. Calissano 1993. The S100 protein causes an increase of intracellular calcium and death of PC12 cells. Neuroscience 53: 919–925.
  • Gannon, J. V., and D. P. Lane 1991. Protein synthesis required to anchor a mutant p53 protein which is temperature-sensitive for nuclear transport. Nature 349: 802–805.
  • Gottlieb, E., R. Haffner, T. Von Rüde, E. F. Wagner, and M. Oren 1994. Down-regulation of wild-type p53 activity interferes with apoptosis of Il-3-dependent hematopoietic cells following Il-3 withdrawal. EMBO J. 13: 1368–1374.
  • Griffin, W. S. T., L. C. Stanley, C. Ling, L. White, V. MacLeod, L. J. Perrot, C. L. White, and C. Araoz 1989. Brain interleukin 1 and S100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl. Acad. Sci. USA 86: 7611–7615.
  • Haglid, K., A. Hamberger, H. Hansson, H. Hyden, L. Persson, and L. Ronnbach 1976. Cellular and subcellular distribution of the S100 protein in rabbit and rat central nervous system. J. Neurosci. Res. 2: 175–192.
  • Haupt, Y., S. Rowan, E. Shaulian, K. H. Vousden, and M. Oren 1995. Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev. 9: 2170–2183.
  • He, J., C. M. De Castro, G. R. Vandenbark, J. Busciglio, and D. Gabuzda 1997. Astrocyte apoptosis induced by HIV-1 transactivation of the c-kit protooncogene. Proc. Natl. Acad. Sci. USA 94: 3954–3959.
  • Heizmann, C. W., and K. Braun 1992. Changes in Ca2+-binding proteins in human neurodegenerative disorders. Trends Neurol. Sci. 15: 259–264.
  • Herschman, H. R., L. Levine, and J. De Vellis 1971. Appearance of a brain-specific antigen (S100-protein) in the developing rat brain. J. Neurochem. 18: 629–633.
  • Kitamura, Y., S. Shimohama, W. Kamoshima, Y. Matsuoka, Y. Nomura, and T. Taniguchi 1997. Changes of p53 in the brains of patients with Alzheimer’s disease. Biochem. Biophys. Res. Commun. 232: 418–421.
  • Kligman, D., and D. R. Marshak 1985. Purification and characterization of a neurite extension factor from bovine brain. Proc. Natl. Acad. Sci. USA 82: 7136–7139.
  • Knippschild, U., M. Oren, and W. Deppert 1996. Abrogation of wild-type p53 mediated growth-inhibition by nuclear exclusion. Oncogene 12: 1755–1765.
  • Kolber, A. R., A. S. Permual, M. N. Goldstein, and B. W. Moore 1978. Drug-induced differentiation of a rat glioma in vitro: the expression of S100, a glial specific protein and steroid sulfatase. Brain Res. 143: 513–520.
  • Labourdette, G., and A. Marks 1975. Synthesis of S100 protein in monolayer cultures of rat-glial cells. Eur. J. Biochem. 58: 73–79.
  • Lee, S. W., C. Tomasetto, K. Swisshelm, K. Keyomarsi, and R. Sager 1992. Down-regulation of a member of the S100 gene family in mammary carcinoma cells and reexpression by azadeoxycytidine treatment. Proc. Natl. Acad. Sci. USA 89: 2504–2508.
  • Marks, A., D. Petsche, D. O’Hanlon, P. C. Kwong, R. Stead, R. Dunn, R. Baumal, and S. K. Liao 1990. S100 protein expression in human melanoma cells: comparison of levels of expression among different cell lines and individual cells in different phases of the cell cycle. Exp. Cell Res. 187: 59–64.
  • Marshak, D. R., S. A. Pesce, L. C. Stanley, and W. S. T. Griffin 1991. Increased S100β neurotrophic activity in Alzheimer’s disease temporal lobe. Neurobiol. Aging 13: 1–7.
  • Martinez, J., I. Georgoff, J. Martinez, and A. J. Levine 1991. Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Dev. 5: 151–159.
  • McConkey, D. J., and S. Orrenius 1994. Signal transduction pathways to apoptosis. Trends Cell Biol. 4: 370–375.
  • Michalovitz, D., O. Halevy, and M. Oren 1990. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62: 671–680.
  • Milner, J. 1995. Flexibility: the key to p53 function? Trends Biochem. Sci. 20: 49–51.
  • Morii, K., R. Tanaka, Y. Takahashi, and R. Kuwano 1992. Cloning of cDNAs encoding human S-100α and β subunits and their differential expression in human tumor cell lines. J. Neurosci. Res. 32: 27–33.
  • Polyak, K., T. Waldman, T. C. He, K. Kinzler, and B. Vogelstein 1996. Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev. 10: 1945–1952.
  • Ryan, J. J., E. Prochownik, C. A. Gottlieb, I. J. Apel, R. Merino, G. Nunez, and M. Clarke 1994. c-myc and bcl-2 modulate p53 function by altering p53 subcellular trafficking during the cell cycle. Proc. Natl. Acad. Sci. USA 91: 5878–5882.
  • Sabapathy, K., M. Klemm, R. Jaenisch, and E. F. Wagner 1997. Regulation of ES cell differentiation by functional and conformational modulation of p53. EMBO J. 16: 6217–6229.
  • Schäfer, B. W., and C. Heizmann 1996. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem. Sci. 21: 134–140.
  • Schagger, H., and G. von Jagow 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368–379.
  • Selinfreund, R. H., S. W. Barger, W. J. Pledger, and L. Van Eldik 1991. Neurotrophic protein S100b stimulates glial proliferation. Proc. Natl. Acad. Sci. USA 88: 3554–3558.
  • Sendtner, M., and H. Thoenen 1994. Neurodegenerative disease. Oxidative stress and motoneuron disease. Curr. Biol. 4: 1036–1039.
  • Sheng, J. G., R. E. Mrak, and W. S. T. Griffin 1994. S100b protein expression in Alzheimer’s disease: potential role in the pathogenesis of neuritic plaques. J. Neurosci. Res. 39: 398–404.
  • Stanley, L. C., R. E. Mrak, R. C. Woody, L. J. Perrot, S. Zhang, D. R. Marshak, S. J. Nelson, and W. S. Griffin 1994. Glial cytokines as neuropathogenic factors in HIV infection: pathogenic similarities to Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 53: 231–238.
  • Vikhanskaya, F., E. Erba, M. D’Incalci, and M. Broggini 1996. Changes in cyclins and cyclin-dependent kinases induced by DNA damaging agents in a human ovarian cancer cell line expressing mutated or wild-type p53. Exp. Cell Res. 227: 380–385.
  • Yahanda, A. M., J. M. Bruner, L. A. Donehower, and R. S. Morrison 1995. Astrocytes derived from p53-deficient mice provide a multistep in vitro model for development of malignant gliomas. Mol. Cell. Biol. 15: 4249–4259.
  • Yonish-Rouach, E., D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren 1991. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352: 345–347.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.