21
Views
81
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Involvement of p53 and p21 in Cellular Defects and Tumorigenesis in Atm−/− Mice

, , , &
Pages 4385-4390 | Received 10 Mar 1998, Accepted 13 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Barlow, C., S. Hirotsune, R. Paylor, M. Liyanage, M. Eckhaus, F. Collins, Y. Shiloh, J. N. Crawley, T. Ried, D. Tagle, and A. Wynshaw-Boris 1996. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86: 159–171.
  • Barlow, C., M. Liyanage, P. B. Moens, C. X. Deng, T. Ried, and A. Wynshaw-Boris 1997. Partial rescue of the prophase I defects of Atm-deficient mice by p53 and p21 null alleles. Nat. Genet. 17: 462–466.
  • Baskaran, R., L. D. Wood, L. L. Whitaker, C. E. Connon, S. E. Morgan, Y. Xu, C. Barlow, D. Baltimore, A. Wynshaw-Boris, M. B. Kastan, and J. Y. Wang 1997. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature 387: 516–519.
  • Brown, E. J., P. A. Beal, C. T. Keith, J. Chen, T. B. Shin, and S. L. Schreiber 1995. Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377: 441–446.
  • Brugarolas, J., C. Chandrasekaran, J. I. Gordon, D. Beach, T. Jacks, and G. J. Hannon 1995. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377: 552–557.
  • Chen, G., and E. Lee 1996. The product of the ATM gene is a 370-kDa nuclear phosphoprotein. J. Biol Chem 271: 33693–33697.
  • Deng, C., P. Zhang, J. W. Harper, S. J. Elledge, and P. Leder 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82: 675–684.
  • Elson, A., Y. Wang, C. J. Daugherty, C. C. Morton, F. Zhou, J. Campos-Torres, and P. Leder 1996. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc. Natl. Acad. Sci. USA 93: 13084–13089.
  • Gatti, R. A., et al. 1988. Localization of an ataxia-telangiectasia gene to chromosome 11q22-23. Nature 336: 577–580.
  • Halevy, O., B. G. Novitch, D. B. Spicer, S. X. Skapek, J. Rhee, G. J. Hannon, D. Beach, and A. B. Lassar 1995. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267: 1018–1021.
  • Hartley, K. O., D. Gell, G. C. Smith, H. Zhang, N. Divecha, M. A. Connelly, A. Admon, S. P. Lees-Miller, C. W. Anderson, and S. P. Jackson 1995. DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82: 849–856.
  • Hartwell, L. H., and M. B. Kastan 1994. Cell cycle control and cancer. Science 266: 1821–1828.
  • Hunter, T. 1995. When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell 83: 1–4.
  • Jacks, T., L. Remington, B. O. Williams, E. M. Schmitt, S. Halachmi, R. T. Bronson, and R. A. Weinberg 1994. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4: 1–7.
  • Kastan, M. B., Q. Zhan, W. S. el-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, Fornace A. J., Jr. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71: 587–597.
  • Keegan, K. S., D. A. Holtzman, A. W. Plug, E. R. Christenson, E. E. Brainerd, G. Flaggs, N. J. Bentley, E. M. Taylor, M. S. Meyn, S. B. Moss, A. M. Carr, T. Ashley, and M. F. Hoekstra 1996. The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes. Genes Dev. 10: 2423–2437.
  • Khanna, K. K., and M. F. Lavin 1993. Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene 8: 3307–3312.
  • Kuerbitz, S. J., B. S. Plunkett, W. V. Walsh, and M. B. Kastan 1992. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. USA 89: 7491–7495.
  • Kuljis, R. O., Y. Xu, M. C. Aguila, and D. Baltimore 1997. Degeneration of neurons, synapses, and neuropil and glial activation in a murine Atm knockout model of ataxia-telangiectasia. Proc. Natl. Acad. Sci. USA 94: 12688–12693.
  • Lehmann, A. R. 1982. Pages 83–102. Ataxia-telangiectasia: a cellular and molecular link between cancer, neuropathology and immune deficiency. In: Bridges, B. A., and D. G. Harnden Wiley Interscience, Chichester, United Kingdom.
  • Macleod, K. F., N. Sherry, G. Hannon, D. Beach, T. Tokino, K. Kinzler, B. Vogelstein, and T. Jacks 1995. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 9: 935–944.
  • Meyn, M. S. 1995. Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res. 55: 5991–6001.
  • Nakanishi, M., G. R. Adami, R. S. Robetorye, A. Noda, S. F. Venable, D. Dimitrov, O. M. Pereira-Smith, and J. R. Smith 1995. Exit from G0 and entry into the cell cycle of cells expressing p21Sdi1 antisense RNA. Proc. Natl. Acad. Sci. USA 92: 4352–4356.
  • Noda, A., Y. Ning, S. F. Venable, O. M. Pereira-Smith, and J. R. Smith 1994. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp. Cell Res. 211: 90–98.
  • Parker, S. B., G. Eichele, P. Zhang, A. Rawls, A. T. Sands, A. Bradley, E. N. Olson, J. W. Harper, and S. J. Elledge 1995. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267: 1024–1027 (Comments.)
  • Savitsky, T., et al. 1995. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749–1753.
  • Shiloh, Y. 1995. Ataxia-telangiectasia: closer to unraveling the mystery. Eur. J. Hum. Genet. 3: 116–138.
  • Wang, Y. A., A. Elson, and P. Leder 1997. Loss of p21 increases sensitivity to ionizing radiation and delays the onset of lymphoma in atm-deficient mice. Proc. Natl. Acad. Sci. USA 94: 14590–14515.
  • Westphal, C. H., S. Rowan, C. Schmaltz, A. Elson, D. E. Fisher, and P. Leder 1997. atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nat. Genet. 16: 397–401.
  • Xiong, Y., G. J. Hannon, H. Zhang, D. Casso, R. Kobayashi, and D. Beach 1993. p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704.
  • Xu, Y., T. Ashley, E. E. Brainerd, R. T. Bronson, M. S. Meyn, and D. Baltimore 1996. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev. 10: 2411–2422.
  • Xu, Y., M. Baldassare, P. Fisher, G. Rathbun, E. M. Oltz, G. D. Yancopoulos, T. M. Jessell, and F. W. Alt 1993. LH-2: a LIM/homeodomain gene expressed in developing lymphocytes and neural cells. Proc. Natl. Acad. Sci. USA 90: 227–231.
  • Xu, Y., and D. Baltimore 1996. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev. 10: 2401–2410.
  • Xu, Y. Unpublished data.
  • Zakian, V. A. 1995. ATM-related genes: what do they tell us about functions of the human gene? Cell 82: 685–687.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.