33
Views
26
CrossRef citations to date
0
Altmetric
Gene Expression

Trypanosome Capping Enzymes Display a Novel Two-Domain Structure

, , &
Pages 4612-4619 | Received 28 Jan 1998, Accepted 23 Apr 1998, Published online: 27 Mar 2023

REFERENCES

  • Allison, L. A., M. Moyle, M. Shales, and C. J. Ingles 1985. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42: 599–610.
  • Bangs, J. D., P. F. Crain, T. Hashizume, J. A. McCloskey, and J. C. Boothroyd 1992. Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides. J. Biol. Chem. 267: 9805–9815.
  • Cho, E. J., T. Takagi, C. R. Moore, and S. Buratowski 1997. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 11: 3319–3326.
  • Cong, P., and S. Shuman 1992. Methyltransferase and subunit association domains of vaccinia virus mRNA capping enzyme. J. Biol. Chem. 267: 16424–16429.
  • Corden, J. L., D. L. Cadena, Ahearn J. M., Jr., and M. E. Dahmus 1985. A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II. Proc. Natl. Acad. Sci. USA 82: 7934–7938.
  • Evers, R., A. Hammer, J. Kock, W. Jess, P. Borst, S. Memet, and A. W. Cornelissen 1989. Trypanosoma brucei contains two RNA polymerase II largest subunit genes with an altered C-terminal domain. Cell 56: 585–597.
  • Fantoni, A., A. O. Dare, and C. Tschudi 1994. RNA polymerase III-mediated transcription of the trypanosome U2 small nuclear RNA gene is controlled by both intragenic and extragenic regulatory elements. Mol. Cell. Biol. 14: 2021–2028.
  • Gunzl, A., E. Ullu, M. Dorner, S. P. Fragoso, K. F. Hoffmann, J. D. Milner, Y. Morita, E. K. Nguu, S. Vanacova, S. Wunsch, A. O. Dare, H. Kwon, and C. Tschudi 1997. Transcription of the Trypanosoma brucei spliced leader RNA gene is dependent only on the presence of upstream regulatory elements. Mol. Biochem. Parasitol. 85: 67–76.
  • Hakansson, K., A. J. Doherty, S. Shuman, and D. B. Wigley 1997. X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell 89: 545–553.
  • Higman, M. A., N. Bourgeois, and E. G. Niles 1992. The vaccinia virus mRNA (guanine-N7-)-methyltransferase requires both subunits of the mRNA capping enzyme for activity. J. Biol. Chem. 267: 16430–16437.
  • Ho, C. K., J. L. Van Etten, and S. Shuman 1996. Expression and characterization of an RNA capping enzyme encoded by Chlorella virus PBCV-1. J. Virol. 70: 6658–6664.
  • Itoh, N., K. Mizumoto, and Y. Kaziro 1984. Messenger RNA guanylyltransferase from Saccharomyces cerevisiae. I. Purification and subunit structure. J. Biol. Chem. 259: 13923–13929.
  • Itoh, N., H. Yamada, Y. Kaziro, and K. Mizumoto 1987. Messenger RNA guanylyltransferase from Saccharomyces cerevisiae. Large scale purification, subunit functions, and subcellular localization. J. Biol. Chem. 262: 1989–1995.
  • Laird, P. W., J. C. Zomerdijk, D. de Korte, and P. Borst 1987. In vivo labelling of intermediates in the discontinuous synthesis of mRNAs in Trypanosoma brucei. EMBO J. 6: 1055–1062.
  • Mao, X., B. Schwer, and S. Shuman 1995. Yeast mRNA cap methyltransferase is a 50-kilodalton protein encoded by an essential gene. Mol. Cell. Biol. 15: 4167–4174.
  • Mao, X., and S. Shuman 1994. Intrinsic RNA (guanine-7) methyltransferase activity of the vaccinia virus capping enzyme D1 subunit is stimulated by the D12 subunit. Identification of amino acid residues in the D1 protein required for subunit association and methyl group transfer. J. Biol. Chem. 269: 24472–24479.
  • McCracken, S., N. Fong, E. Rosonina, K. Yankulov, G. Brothers, D. Siderovski, A. Hessel, S. Foster, A. E. Program, S. Shuman, and D. L. Bentley 1997. 5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 11: 3306–3318.
  • McNally, K. P., and N. Agabian 1992. Trypanosoma brucei spliced-leader RNA methylations are required for trans splicing in vivo. Mol. Cell. Biol. 12: 4844–4851.
  • Mizumoto, K., and Y. Kaziro 1987. Messenger RNA capping enzymes from eukaryotic cells. Prog. Nucleic Acid Res. Mol. Biol. 34: 1–28.
  • Mizumoto, K., Y. Kaziro, and F. Lipmann 1982. Reaction mechanism of mRNA guanylyltransferase from rat liver: isolation and characterization of a guanylyl-enzyme intermediate. Proc. Natl. Acad. Sci. USA 79: 1693–1697.
  • Moss, B., M. J. Ensinger, S. A. Martin, and C. M. Wei 1975. Modification of the 5′-terminus of mRNA by guanylyl and methyl transferases from vaccinia virus In vitro transcription and translation of viral genomes. In: Haenni, A. L., and G. Beaud161–168Institut National de la Santé et de la Recherche Médicale, Paris, France.
  • Mottram, J., K. L. Perry, P. M. Lizardi, R. Luhrmann, N. Agabian, and R. G. Nelson 1989. Isolation and sequence of four small nuclear U RNA genes of Trypanosoma brucei subsp. brucei: identification of the U2, U4, and U6 RNA analogs. Mol. Cell. Biol. 9: 1212–1223.
  • Murphy, W. J., K. P. Watkins, and N. Agabian 1986. Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: evidence for trans splicing. Cell 47: 517–525.
  • Nakaar, V., A. O. Dare, D. Hong, E. Ullu, and C. Tschudi 1994. Upstream tRNA genes are essential for expression of small nuclear and cytoplasmic RNA genes in trypanosomes. Mol. Cell. Biol. 14: 6736–6742.
  • Rudenko, G., D. Bishop, K. Gottesdiener, and L. H. Van der Ploeg 1989. Alpha-amanitin resistant transcription of protein coding genes in insect and bloodstream form Trypanosoma brucei. EMBO J. 8: 4259–4263.
  • Rudenko, G., M. G. Lee, and L. H. Van der Ploeg 1992. The PARP and VSG genes of Trypanosoma brucei do not resemble RNA polymerase II transcription units in sensitivity to Sarkosyl in nuclear run-on assays. Nucleic Acids Res. 20: 303–306.
  • Saraste, M., P. R. Sibbald, and A. Wittinghofer 1990. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15: 430–434.
  • Shibagaki, Y., N. Itoh, H. Yamada, S. Nagata, and K. Mizumoto 1992. mRNA capping enzyme. Isolation and characterization of the gene encoding mRNA guanyly[l]transferase subunit from Saccharomyces cerevisiae. J. Biol. Chem. 267: 9521–9528.
  • Shuman, S. 1989. Functional domains of vaccinia virus mRNA capping enzyme. Analysis by limited tryptic digestion. J. Biol. Chem. 264: 9690–9695.
  • Shuman, S., and J. Hurwitz 1981. Mechanism of mRNA capping by vaccinia virus guanylyltransferase: characterization of an enzyme-guanylate intermediate. Proc. Natl. Acad. Sci. USA 78: 187–191.
  • Shuman, S., Y. Liu, and B. Schwer 1994. Covalent catalysis in nucleotidyl transfer reactions: essential motifs in Saccharomyces cerevisiae RNA capping enzyme are conserved in Schizosaccharomyces pombe and viral capping enzymes and among polynucleotide ligases. Proc. Natl. Acad. Sci. USA 91: 12046–12050.
  • Shuman, S., and S. G. Morham 1990. Domain structure of vaccinia virus mRNA capping enzyme. Activity of the Mr 95,000 subunit expressed in Escherichia coli. J. Biol. Chem. 265: 11967–11972.
  • Shuman, S., and B. Schwer 1995. RNA capping enzyme and DNA ligase: a superfamily of covalent nucleotidyl transferases. Mol. Microbiol. 17: 405–410.
  • Shuman, S., M. Surks, H. Furneaux, and J. Hurwitz 1980. Purification and characterization of a GTP-pyrophosphate exchange activity from vaccinia virions. Association of the GTP-pyrophosphate exchange activity with vaccinia mRNA guanylyltransferase. RNA (guanine-7-)methyltransferase complex (capping enzyme). J. Biol. Chem. 255: 11588–11598.
  • Smith, J. L., J. R. Levin, C. J. Ingles, and N. Agabian 1989. In trypanosomes the homolog of the largest subunit of RNA polymerase II is encoded by two genes and has a highly unusual C-terminal domain structure. Cell 56: 815–827.
  • Sutton, R. E., and J. C. Boothroyd 1986. Evidence for trans splicing in trypanosomes. Cell 47: 527–535.
  • Takagi, T., C. R. Moore, F. Diehn, and S. Buratowski 1997. An RNA 5′-triphosphatase related to the protein tyrosine phosphatases. Cell 89: 867–873.
  • Toyama, R., K. Mizumoto, Y. Nakahara, T. Tatsuno, and Y. Kaziro 1983. Mechanism of the mRNA guanylyltransferase reaction: isolation of N epsilon-phospholysine and GMP (5′ leads to N epsilon) lysine from the guanylyl-enzyme intermediate. EMBO J. 2: 2195–2201.
  • Tschudi, C., F. F. Richards, and E. Ullu 1986. The U2 RNA analogue of Trypanosoma brucei gambiense: implications for a splicing mechanism in trypanosomes. Nucleic Acids Res. 14: 8893–8903.
  • Tutas, D. J., and E. Paoletti 1977. Purification and characterization of core-associated polynucleotide 5′-triphosphatase from vaccinia virus. J. Biol. Chem. 252: 3092–3098.
  • Ullu, E., and C. Tschudi 1995. Accurate modification of the trypanosome spliced leader cap structure in a homologous cell-free system. J. Biol. Chem. 270: 20365–20369.
  • Ullu, E., and C. Tschudi 1990. Permeable trypanosome cells as a model system for transcription and trans-splicing. Nucleic Acids Res. 18: 3319–3326.
  • Ullu, E., and C. Tschudi 1991. Trans splicing in trypanosomes requires methylation of the 5′ end of the spliced leader RNA. Proc. Natl. Acad. Sci. USA 88: 10074–10078.
  • Ullu, E., and C. Tschudi. Unpublished data.
  • Venkatesan, S., A. Gershowitz, and B. Moss 1980. Modification of the 5′ end of mRNA. Association of RNA triphosphatase with the RNA guanylyltransferase-RNA (guanine-7-)methyltransferase complex from vaccinia virus. J. Biol. Chem. 255: 903–908.
  • Walker, J. E., M. Saraste, M. J. Runswick, and N. J. Gay 1982. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1: 945–951.
  • Wang, G. P., L. Deng, C. K. Ho, and S. Shuman 1997. Phylogeny of mRNA capping enzymes. Proc. Natl. Acad. Sci. USA 94: 9573–9578.
  • Wang, R., R. Kobayashi, and J. M. Bishop 1996. Cellular adherence elicits ligand-independent activation of the Met cell-surface receptor. Proc. Natl. Acad. Sci. USA 93: 8425–8430.
  • Yagi, Y., K. Mizumoto, and Y. Kaziro 1983. Association of an RNA 5′-triphosphatase activity with RNA guanylyltransferase partially purified from rat liver nuclei. EMBO J. 2: 611–615.
  • Yamada-Okabe, T., O. Shimmi, R. Doi, K. Mizumoto, M. Arisawa, and H. Yamada-Okabe 1996. Isolation of the mRNA-capping enzyme and ferric-reductase-related genes from Candida albicans. Microbiology 142: 2515–2523.
  • Yue, Z., E. Maldonado, R. Pillutla, H. Cho, D. Reinberg, and A. J. Shatkin 1997. Mammalian capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. Proc. Natl. Acad. Sci. USA 94: 12898–12903.
  • Zwierzynski, T. A., and G. A. Buck 1990. In vitro capping in Trypanosoma cruzi identifies and shows specificity for the spliced leader RNA and U-RNAs. Nucleic Acids Res. 18: 4197–4206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.