84
Views
429
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Disruption of Higher-Order Folding by Core Histone Acetylation Dramatically Enhances Transcription of Nucleosomal Arrays by RNA Polymerase III

, , &
Pages 4629-4638 | Received 03 Apr 1998, Accepted 20 May 1998, Published online: 27 Mar 2023

REFERENCES

  • Allan, J., N. Harborne, D. C. Rau, and H. Gould 1982. Participation of core histone “tails” in the stabilization of the chromatin solenoid. J. Cell Biol. 93: 285–297.
  • Alland, L., R. Muhle, Hou H., Jr., J. Potes, L. Chin, N. Schreiber-Agus, and R. A. DePinho 1997. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387: 49–55.
  • Allfrey, V., R. M. Faulkner, and A. E. Mirsky 1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 51: 786–794.
  • Annunziato, A. T., L. L. Frado, R. L. Seale, and C. L. Woodcock 1988. Treatment with sodium butyrate inhibits the complete condensation of interphase chromatin. Chromosoma 96: 132–138.
  • Ausio, J., and K. E. van Holde 1986. Histone hyperacetylation: its effects on nucleosome conformation and stability. Biochemistry 25: 1421–1428.
  • Banéres, J.-L., A. Martin, and J. Parello 1997. The N tails of histones H3 and H4 adopt a highly structured conformation in the nucleosome. J. Mol. Biol. 273: 503–508.
  • Batra, P. P., M. A. Roebuck, and D. Uetrecht 1990. Effect of lysine modification on the secondary structure of ovalbumin. J. Prot. Chem. 9: 37–44.
  • Bednar, J., R. A. Horowitz, J. Dubochet, and C. L. Woodcock 1995. Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy. J. Cell Biol. 131: 1365–1376.
  • Birkenmeier, E. H., D. D. Brown, and E. Jordan 1978. A nuclear extract of Xenopus laevis oocytes that accurately transcribes 5S RNA genes. Cell 15: 1077–1086.
  • Bresnick, E. H., S. John, and G. L. Hager 1991. Histone hyperacetylation does not alter the positioning or stability of phased nucleosomes on the mouse mammary tumor virus long terminal repeat. Biochemistry 30: 3490–3497.
  • Brownell, J. E., J. Zhou, T. Ranalli, R. Kobayashi, D. G. Edmondson, S. Y. Roth, and C. D. Allis 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851.
  • Davie, J. R. 1982. Two-dimensional gel systems for rapid histone analysis for use in minislab polyacrylamide gel electrophoresis. Anal. Biochem. 120: 276–281.
  • Davie, J. R. Covalent modifications of histones: expression from chromatin templates. Curr. Opin. Gen. Devel., in press.
  • Davie, J. R., and M. J. Hendzel 1994. Multiple functions of dynamic histone acetylation. J. Cell Biochem. 55: 98–105.
  • Dedon, P. C., J. A. Soults, C. D. Allis, and M. A. Gorovsky 1991. Formaldehyde cross-linking and immunoprecipitation demonstrate developmental changes in H1 association with transcriptionally active genes. Mol. Cell. Biol. 11: 1729–1733.
  • Dong, F., J. C. Hansen, and K. E. van Holde 1990. DNA and protein determinants of nucleosome positioning on sea urchin 5S rRNA gene sequences in vitro. Proc. Natl. Acad. Sci. USA 87: 5724–5728.
  • Fletcher, T. M., and J. C. Hansen 1995. Core histone tail domains mediate oligonucleosome folding and nucleosomal DNA organization through distinct molecular mechanisms. J. Biol. Chem. 270: 25359–25362.
  • Fletcher, T. M., and J. C. Hansen 1996. The nucleosomal array: structure/function relationships. Crit. Rev. Eukaryot. Gene Exp. 6: 149–188.
  • Fletcher, T. M., U. Krishnan, P. Serwer, and J. C. Hansen 1994. Quantitative agarose gel electrophoresis of chromatin: nucleosome-dependent changes in charge, shape, and deformability at low ionic strength. Biochemistry 33: 2226–2233.
  • Fletcher, T. M., P. Serwer, and J. C. Hansen 1994. Quantitative analysis of macromolecular conformational changes using agarose gel electrophoresis: application to chromatin folding. Biochemistry 33: 10859–10863.
  • Garcia-Ramirez, M., F. Dong, and J. Ausio 1992. Role of the histone “tails” in the folding of oligonucleosomes depleted of histone H1. J. Biol. Chem. 267: 19587–19595.
  • Garcia-Ramirez, M., C. Rocchini, and J. Ausio 1995. Modulation of chromatin folding by histone acetylation. J. Biol. Chem. 270: 17923–17928.
  • Georgel, P., B. Demeler, C. Terpening, M. R. Paule, and K. E. van Holde 1993. Binding of the RNA polymerase I transcription complex to its promoter can modify positioning of downstream nucleosomes assembled in vitro. J. Biol. Chem. 268: 1947–1954.
  • Griess, G. A., E. T. Moreno, R. A. Easom, and P. Serwer 1989. The sieving of spheres during agarose gel electrophoresis: quantitation and modeling. Biopolymers 28: 1475–1484.
  • Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389: 349–352.
  • Hansen, J. C. 1997. The core histone amino-termini: combinatorial interaction domains that link chromatin structure with function. Chemtracts Biochem. Mol. Biol. 10: 56–69.
  • Hansen, J. C., J. Ausio, V. H. Stanik, and K. E. van Holde 1989. Homogeneous reconstituted oligonucleosomes, evidence for salt-dependent folding in the absence of histone H1. Biochemistry 28: 9129–9136.
  • Hansen, J. C., J. I. Kreider, B. Demeler, and T. M. Fletcher 1997. Analytical ultracentrifugation and agarose gel electrophoresis as tools for studying chromatin folding in solution. Methods Comp. Methods Enzymol. 12: 62–72.
  • Hansen, J. C., and D. Lohr 1993. Assembly and structural properties of subsaturated chromatin arrays. J. Biol. Chem. 268: 5840–5848.
  • Hansen, J. C., and A. P. Wolffe 1992. Influence of chromatin folding on transcription initiation and elongation by RNA polymerase III. Biochemistry 31: 7977–7988.
  • Hansen, J. C., and A. P. Wolffe 1994. A role for histones H2A/H2B in chromatin folding and transcriptional repression. Proc. Natl. Acad. Sci. USA 91: 2339–2343.
  • Hebbes, T. R., A. L. Clayton, A. W. Thorne, and C. Crane-Robinson 1994. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J. 13: 1823–1830.
  • Hebbes, T. R., A. W. Thorne, A. L. Clayton, and C. Crane-Robinson 1992. Histone acetylation and globin gene switching. Nucleic Acids Res. 20: 1017–1022.
  • Hebbes, T. R., A. W. Thorne, and C. Crane-Robinson 1988. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7: 1395–1402.
  • Howe, L., and J. Ausio 1998. Nucleosome translational position, not histone acetylation, determines TFIIIA binding to nucleosomal Xenopus laevis 5S rRNA genes. Mol. Cell. Biol. 18: 1156–1162.
  • Kamakaka, R. T., and J. O. Thomas 1990. Chromatin structure of transcriptionally competent and repressed genes. EMBO J. 9: 3997–4006.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
  • Lee, D. Y., J. J. Hayes, D. Pruss, and A. P. Wolffe 1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72: 73–84.
  • Loidl, P. 1994. Histone acetylation: facts and questions. Chromosoma 103: 441–449.
  • McGhee, J. D., J. M. Nickol, G. Felsenfeld, and D. C. Rau 1983. Histone hyperacetylation has little effect on the higher order folding of chromatin. Nucleic Acids Res. 11: 4065–4075.
  • Meersseman, G., S. Pennings, and E. M. Bradbury 1991. Chromatosome positioning on assembled long chromatin. Linker histones affect nucleosome placement on 5S rDNA. J. Mol. Biol. 220: 89–100.
  • Nacheeva, G. A., D. Y. Guschin, O. V. Preobrazhenskaya, V. L. Karpov, K. K. Elbradise, and A. D. Mirzabekov 1989. Change in the pattern of histone binding to DNA upon transcriptional activation. Cell 58: 27–36.
  • Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and Y. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959.
  • Owen-Hughes, T., and J. L. Workman 1994. Experimental analysis of chromatin function in transcription control. Crit. Rev. Eukaryot. Gene Exp. 4: 403–441.
  • Pogo, B. G., V. G. Allfrey, and A. E. Mirsky 1966. RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. Proc. Natl. Acad. Sci. USA 55: 805–812.
  • Postnikov, Y. V., V. V. Shick, A. V. Belyavsky, K. R. Khrapko, K. L. Brodolin, T. A. Nikolskaya, and A. D. Mirzabekov 1991. Distribution of high mobility group proteins 1/2, E and 14/17 and linker histones H1 and H5 on transcribed and non-transcribed regions of chicken erythrocyte chromatin. Nucleic Acids Res. 19: 717–725.
  • Schwarz, P. M., A. Felthauser, T. M. Fletcher, and J. C. Hansen 1996. Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains. Biochemistry 35: 4009–4015.
  • Schwarz, P. M., and J. C. Hansen 1994. Formation and stability of higher order chromatin structures. Contributions of the histone octamer. J. Biol. Chem. 269: 16284–16289.
  • Shaw, O. J. 1969. Electrophoresis. Academic Press, London, United Kingdom.
  • Simon, R. H., and G. Felsenfeld 1979. A new procedure for purifying histone pairs H2A+H2B and H3+H4 from chromatin using hydroxylapatite. Nucleic Acids Res. 6: 689–696.
  • Simpson, R. T., F. Thoma, and J. M. Brubaker 1985. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42: 799–808.
  • Taunton, J., C. A. Hassig, and S. L. Schreiber 1996. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272: 408–411.
  • Thorne, A. W., D. Kmiciek, K. Mitchelson, P. Sautiere, and C. Crane-Robinson 1990. Patterns of histone acetylation. Eur. J. Biochem. 193: 701–713.
  • Tse, C., and J. C. Hansen 1997. Hybrid trypsinized nucleosomal arrays: identification of multiple functional roles of the H2A/H2B and H3/H4 N-termini in chromatin fiber compaction. Biochemistry 36: 11381–11388.
  • Turner, B. M. 1991. Histone acetylation and control of gene expression. J. Cell Sci. 99: 13–20.
  • Turner, B. M. 1993. Decoding the nucleosome. Cell 75: 5–8.
  • Turner, B. M., A. J. Birley, and J. Lavender 1992. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69: 375–384.
  • Ura, K., H. Kurumizaka, S. Dimitrov, G. Almouzni, and A. P. Wolffe 1997. Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression. EMBO J. 16: 2096–2107.
  • Usachenko, S. I., S. G. Bavykin, I. M. Gavin, and E. M. Bradbury 1994. Rearrangement of the histone H2A C-terminal domain in the nucleosome. Proc. Natl. Acad. Sci. USA 91: 6845–6849.
  • van Holde, K., and J. Zlatanova 1996. What determines the folding of the chromatin fiber? Proc. Natl. Acad. Sci. USA 93: 10548–10555.
  • van Holde, K. E. 1988. Chromatin. Springer-Verlag, New York, N.Y.
  • van Holde, K. E., and W. O. Weischet 1978. Boundary analysis of sedimentation—velocity experiments with monodisperse and paucidisperse solutes. Biopolymers 17: 1387–1403.
  • Vettese-Dadey, M., P. A. Grant, T. R. Hebbes, C. Crane-Robinson, C. D. Allis, and J. L. Workman 1996. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15: 2508–2518.
  • Weintraub, H. 1985. Assembly and propagation of repressed and derepressed chromosomal states. Cell 42: 705–711.
  • West, M. H., and W. M. Bonner 1980. Histone H2A, a heteromorphous family of eight protein species. Biochemistry 19: 3238–3245.
  • Wolffe, A. P. 1989. Transcriptional activation of Xenopus class III genes in chromatin isolated from sperm and somatic nuclei. Nucleic Acids Res. 17: 767–780.
  • Wolffe, A. P. 1995. Chromatin: structure and function. Academic Press, New York, N.Y.
  • Wolffe, A. P., J. Wong, and D. Pruss 1997. Activators and repressors: making use of chromatin to regulate transcription. Genes Cells 2: 291–302.
  • Xu, X., L. G. Cooper, P. J. Dimario, and J. W. Nelson 1994. Helix formation in model peptides based on nucleolin TPAKK motifs. Biopolymers 35: 93–102.
  • Yao, J., P. T. Lowary, and J. Widom 1990. Direct detection of linker DNA bending in defined-length oligomers of chromatin. Proc. Natl. Acad. Sci. USA 87: 7603–7607.
  • Yao, J., P. T. Lowary, and J. Widom 1991. Linker DNA bending induced by the core histones of chromatin. Biochemistry 30: 8408–8414.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.