4
Views
48
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Yeast Ty1 Retrotransposition Is Stimulated by a Synergistic Interaction between Mutations in Chromatin Assembly Factor I and Histone Regulatory Proteins

, , , , , , & show all
Pages 4783-4792 | Received 22 Jan 1998, Accepted 16 Apr 1998, Published online: 27 Mar 2023

REFERENCES

  • Alani, E., L. Cao, and N. Kleckner 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116: 541–545.
  • Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.
  • Anderson, L. E., X. Wang, and J. T. Gibbons 1995. Three enzymes of carbon metabolism or their antigenic analogs in pea leaf nuclei. Plant Physiol. 108: 659–667.
  • Boeke, J. D., D. J. Garfinkel, C. A. Styles, and G. R. Fink 1985. Ty elements transpose through an RNA intermediate. Cell 40: 491–500.
  • Boeke, J. D., F. LaCroute, and G. R. Fink 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197: 345–346.
  • Boeke, J. D., and S. B. Sandmeyer 1991. Yeast transposable elements The molecular biology of the yeast Saccharomyces. In: Jones, E. W., J. R. Pringle, and J. R. Broach193–261Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Boeke, J. D., C. A. Styles, and G. R. Fink 1986. Saccharomyces cerevisiae SPT3 gene is required for transposition and transpositional recombination of chromosomal Ty elements. Mol. Cell. Biol. 6: 3575–3581.
  • Bradshaw, V. A., and K. McEntee 1989. DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol. Gen. Genet. 218: 465–474.
  • Bryk, M., M. Banerjee, M. Murphy, K. E. Knudsen, D. J. Garfinkel, and M. J. Curcio 1997. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11: 255–269.
  • Burck, C. L. 1996. Ph.D. thesis. University of Illinois, Chicago.
  • Chapman, K. B., and J. D. Boeke 1991. Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 65: 483–492.
  • Chapman, K. B., A. S. Bystrom, and J. D. Boeke 1992. Initiator methionine tRNA is essential for Ty1 transposition in yeast. Proc. Natl. Acad. Sci. USA 89: 3236–3240.
  • Clark-Adams, C. D., D. Norris, M. A. Osley, J. S. Fassler, and F. Winston 1988. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 2: 150–159.
  • Connolly, C. M., and S. B. Sandmeyer 1997. RNA polymerase III interferes with Ty3 integration. FEBS Lett. 405: 305–311.
  • Curcio, M. J., and D. J. Garfinkel 1992. Posttranslational control of Ty1 retrotransposition occurs at the level of protein processing. Mol. Cell. Biol. 12: 2813–2825.
  • Curcio, M. J., and D. J. Garfinkel 1991. Single-step selection for Ty1 element retrotransposition. Proc. Natl. Acad. Sci. USA 88: 936–940.
  • Devine, S. E., and J. D. Boeke 1996. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev. 10: 620–633.
  • Drake, J. W. 1991. A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. Sci. USA 88: 7160–7164.
  • Eisenmann, D. M., K. M. Arndt, S. L. Ricupero, J. W. Rooney, and F. Winston 1992. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev. 6: 1319–1331.
  • Eisenmann, D. M., C. Dollard, and F. Winston 1989. SPT15, the gene encoding the yeast TATA binding factor TFIID, is required for normal transcription initiation in vivo. Cell 58: 1183–1191.
  • Enomoto, S., and J. Berman 1998. Chromatin assembly factor I contributes to the maintenance, but not the reestablishment, of silencing at the yeast silent mating loci. Genes Dev. 12: 219–232.
  • Enomoto, S., P. D. McCune-Zierath, M. Gerami-Nejad, M. A. Sanders, and J. Berman 1997. RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo. Genes Dev. 11: 358–370.
  • Farabaugh, P. J. 1995. Post-transcriptional regulation of transposition by Ty retrotransposons of Saccharomyces cerevisiae. J. Biol. Chem. 270: 10361–10364.
  • Gaillard, P. H., E. M. Martini, P. D. Kaufman, B. Stillman, E. Moustacchi, and G. Almouzni 1996. Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 86: 887–896.
  • Gietz, R. D., and A. Sugino 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527–534.
  • Han, M., and M. Grunstein 1988. Nucleosome loss activates yeast downstream promoters in vivo. Cell 55: 1137–1145.
  • Han, M., U. J. Kim, P. Kayne, and M. Grunstein 1988. Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae. EMBO J. 7: 2221–2228.
  • Huang, H., J. Y. Yong, C. Burck, and S. W. Liebman. Host genes that affect the target-site distribution of the yeast retrotransposon, Ty1. Submitted for publication.
  • Huang, H., A. Kahana, D. E. Gottschling, L. Prakash, and S. W. Liebman 1997. The ubiquitin-conjugating enzyme Rad6 (Ubc2) is required for silencing in Saccharomyces cerevisiae. Mol. Cell. Biol. 17: 6693–6699.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.
  • Ji, H., D. P. Moore, M. A. Blomberg, L. T. Braiterman, D. F. Voytas, G. Natsoulis, and J. D. Boeke 1993. Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73: 1007–1018.
  • Kang, X. L., F. Yadao, R. D. Gietz, and B. A. Kunz 1992. Elimination of the yeast RAD6 ubiquitin conjugase enhances base-pair transitions and G.C—T.A transversions as well as transposition of the Ty element: implications for the control of spontaneous mutation. Genetics 130: 285–294.
  • Kaufman, P. D., J. L. Cohen, and M. A. Osley 1998. Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol. Cell. Biol. 18: 4793–4806.
  • Kaufman, P. D., R. Kobayashi, N. Kessler, and B. Stillman 1995. The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell 81: 1105–1114.
  • Kaufman, P. D., R. Kobayashi, and B. Stillman 1997. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev. 11: 345–357.
  • Kirchner, J., C. M. Connolly, and S. B. Sandmeyer 1995. Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science 267: 1488–1491.
  • Kunz, B. A., L. Kohalmi, X. Kang, and K. A. Magnusson 1990. Specificity of the mutator effect caused by disruption of the RAD1 excision repair gene of Saccharomyces cerevisiae. J. Bacteriol. 172: 3009–3014.
  • Kunz, B. A., M. G. Peters, S. E. Kohalmi, J. D. Armstrong, M. Glattke, and K. Badiani 1989. Disruption of the RAD52 gene alters the spectrum of spontaneous SUP4-o mutations in Saccharomyces cerevisiae. Genetics 122: 535–542.
  • Leib-Mosch, C., and W. Seifarth 1995. Evolution and biological significance of human retroelements. Virus Genes 11: 133–145.
  • Liebman, S. W., and G. Newnam 1993. A ubiquitin-conjugating enzyme, RAD6, affects the distribution of Ty1 retrotransposon integration positions. Genetics 133: 499–508.
  • Luria, S. E., and M. Delbruck 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491–511.
  • Maftahi, M., C. Gaillardin, and J. M. Nicaud 1996. Sticky-end polymerase chain reaction method for systematic gene disruption in Saccharomyces cerevisiae. Yeast 12: 859–868.
  • Meeks-Wagner, D., and L. H. Hartwell 1986. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell 44: 43–52.
  • Menees, T. M., and S. B. Sandmeyer 1996. Cellular stress inhibits transposition of the yeast retrovirus-like element Ty3 by a ubiquitin-dependent block of virus-like particle formation. Proc. Natl. Acad. Sci. USA 93: 5629–5634.
  • Monson, E. K., D. de Bruin, and V. A. Zakian 1997. The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres. Proc. Natl. Acad. Sci. USA 94: 13081–13086.
  • Moran, L., D. Norris, and M. A. Osley 1990. A yeast H2A-H2B promoter can be regulated by changes in histone gene copy number. Genes Dev. 4: 752–763.
  • Morrison, A., E. J. Miller, and L. Prakash 1988. Domain structure and functional analysis of the carboxyl-terminal polyacidic sequence of the RAD6 protein of Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 1179–1185.
  • Norris, D., B. Dunn, and M. A. Osley 1988. The effect of histone gene deletions on chromatin structure in Saccharomyces cerevisiae. Science 242: 759–761.
  • Orr-Weaver, T. L., and J. W. Szostak 1983. Yeast recombination: the association between double-strand gap repair and crossing-over. Proc. Natl. Acad. Sci. USA 80: 4417–4421.
  • Osley, M. A. 1997. Saccharomycesgenome database. http://genome-www.stanford.edu/cgi-bin/dbrun/SacchDB?find+Locus+%22hir3%22.
  • Osley, M. A., and D. Lycan 1987. trans-acting regulatory mutations that alter transcription of Saccharomyces cerevisiae histone genes. Mol. Cell. Biol. 7: 4204–4210.
  • Paquin, C. E., and V. M. Williamson 1984. Temperature effects on the rate of Ty transposition. Science 226: 53–55.
  • Paquin, C. E., and V. M. Williamson 1986. Ty insertions at two loci account for most of the spontaneous antimycin A resistance mutations during growth at 15°C of Saccharomyces cerevisiae strains lacking ADH1. Mol. Cell. Biol. 6: 70–79.
  • Parthun, M. R., J. Widom, and D. E. Gottschling 1996. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87: 85–94.
  • Picologlou, S., N. Brown, and S. W. Liebman 1990. Mutations in RAD6, a yeast gene encoding a ubiquitin-conjugating enzyme, stimulate retrotransposition. Mol. Cell. Biol. 10: 1017–1022.
  • Pruss, D., F. D. Bushman, and A. P. Wolffe 1994. Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc. Natl. Acad. Sci. USA 91: 5913–5917.
  • Pryciak, P. M., and H. E. Varmus 1992. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69: 769–780.
  • Recht, J., B. Dunn, A. Raff, and M. A. Osley 1996. Functional analysis of histones H2A and H2B in transcriptional repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 2545–2553.
  • Reynolds, P., L. Prakash, and S. Prakash 1987. Nucleotide sequence and functional analysis of the RAD1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 1012–1020.
  • Rinckel, L. A., and D. J. Garfinkel 1996. Influences of histone stoichiometry on the target site preference of retrotransposons Ty1 and Ty2 in Saccharomyces cerevisiae. Genetics 142: 761–776.
  • Rose, M., P. Koetter, and K. D. Entian. 1995. Hypothetical 191.7 KD protein in HOM6-PMT4 intergenic region. http://www.expasy.ch/cgi-bin/sprot-search-ac?P47171.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60: 237–243.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101: 202–211.
  • Scherer, S., C. Mann, and R. W. Davis 1982. Reversion of a promoter deletion in yeast. Nature 298: 815–819.
  • Schneider, B. L., W. Seufert, B. Steiner, Q. H. Yang, and A. B. Futcher 1995. Use of polymerase chain reaction epitope tagging for protein tagging in Saccharomyces cerevisiae. Yeast 11: 1265–1274.
  • Sharon, G., T. J. Burkett, and D. J. Garfinkel 1994. Efficient homologous recombination of Ty1 element cDNA when integration is blocked. Mol. Cell. Biol. 14: 6540–6551.
  • Sherman, F., G. R. Fink, and J. B. Hicks 1986. Saccharomyces Handbook of genetics. In: King, R. C.359–393Plenum Publishing Corp., New York, N.Y.
  • Sherwood, P. W., and M. A. Osley 1991. Histone regulatory (hir) mutations suppress delta insertion alleles in Saccharomyces cerevisiae. Genetics 128: 729–738.
  • Sherwood, P. W., S. V.-M. Tsang, and M. A. Osley 1993. Characterization of HIR1 and HIR2, two genes required for regulation of histone gene transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 28–38.
  • Taguchi, A. K. W., M. Ciriacy, and E. T. Young 1984. Carbon source dependence of transposable element-associated gene activation in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 61–68.
  • Varmus, H. 1989. Lessons from the life cycle of retrovirus. Harvey Lect. 83: 35–56.
  • Verreault, A., P. D. Kaufman, R. Kobayashi, and B. Stillman 1996. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87: 95–104.
  • Wilke, C. M., S. H. Heidler, N. Brown, and S. W. Liebman 1989. Analysis of yeast retrotransposon Ty insertions at the CAN1 locus. Genetics 123: 655–665.
  • Winston, F., D. T. Chaleff, B. Valent, and G. R. Fink 1984. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107: 179–197.
  • Winston, F., C. Dollard, E. A. Malone, J. Clare, J. G. Kapakos, P. Farabaugh, and P. L. Minehart 1987. Three genes are required for trans-activation of Ty transcription in yeast. Genetics 115: 649–656.
  • Xu, H., and J. D. Boeke 1991. Inhibition of Ty1 transposition by mating pheromones in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 2736–2743.
  • Xu, H., U.-J. Kim, T. Schuster, and M. Grunstein 1992. Identification of a new set of cell cycle-regulatory genes that regulate S-phase transcription of histone genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 5249–5259.
  • Zhang, S., T. J. Burkett, I. Yamashita, and D. J. Garfinkel 1997. Genetic redundancy between SPT23 and MGA2: regulators of Ty-induced mutations and Ty1 transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 17: 4718–4729.
  • Zou, S., and D. F. Voytas 1997. Silent chromatin determines target preference of the Saccharomyces retrotransposon Ty5. Proc. Natl. Acad. Sci. USA 94: 7412–7416.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.