47
Views
228
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

HSP90 Interacts with and Regulates the Activity of Heat Shock Factor 1 in Xenopus Oocytes

, , &
Pages 4949-4960 | Received 30 Mar 1998, Accepted 27 May 1998, Published online: 28 Mar 2023

REFERENCES

  • Abravaya, K. A., M. Myers, S. P. Murphy, and R. I. Morimoto 1992. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev. 6: 1153–1164.
  • Ananthan, J., A. L. Golberg, and R. Voellmy 1986. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232: 522–525.
  • Baler, R., W. J. Welch, and R. Voellmy 1992. Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J. Cell Biol. 117: 1151–1159.
  • Baler, R., G. Dahl, and R. Voellmy 1993. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol. Cell. Biol. 13: 2486–2496.
  • Baler, R., J. Zou, and R. Voellmy 1996. Evidence for a role of hsp70 in the regulation of the heat shock response of mammalian cells. Cell Stress Chaperones 1: 33–39.
  • Bharadwaj, S., A. Hnatov, A. Ali, and N. Ovsenek 1998. Regulation of the DNA-binding and transcriptional activities of heat shock factor 1 is uncoupled in Xenopus oocytes. Biochim. Biophys. Acta 1402: 79–85.
  • Bohen, S. P., and K. R. Yamamoto 1994. Modulation of steroid-receptor signal transduction by heat shock proteins. The biology of heat shock proteins and molecular chaperones. In: Mormoto, R. I., A. Tissiers, and C. Georgopoulos313–334Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Bonner, J. J., S. Heyward, and D. L. Fackenthal 1992. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor. Mol. Cell. Biol. 12: 1021–1030.
  • Boorstein, W. R., and E. A. Craig 1990. Transcriptional regulation of SSA3, an hsp70 gene from Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 3262–3267.
  • Brugge, J. S., E. Erikson, and R. L. Erikson 1981. The specific interaction of the Rous sarcoma virus transforming protein pp60src, with two cellular proteins. Cell 25: 363–372.
  • Clos, J., J. T. Westwood, P. B. Becker, S. Wilson, K. Lambert, and C. Wu 1990. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63: 1085–1097.
  • Cotto, J. J., M. Kline, and R. I. Morimoto 1996. Activation of heat shock factor 1 DNA binding preceds stress-induced serine phosphorylation. J. Biol. Chem. 271: 3355–3358.
  • DiDomenico, B. J., G. E. Bugaisky, and S. Lindquist 1982. The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31: 593–603.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11: 1475–1489.
  • Dougherty, J. J., D. A. Rabideau, A. M. Iannoti, W. P. Sullivan, and D. O. Toft 1987. Identification of the 90 kDa substrate of rat liver type II casein kinase with the heat shock protein which binds steroid receptors. Biochim. Biophys. Acta 927: 74–80.
  • Farkas, T., Y. A. Kutskova, and V. Zimarino 1998. Intramolecular repression of mouse heat shock factor 1. Mol. Cell. Biol. 18: 906–918.
  • Firestone, G. L., and S. D. Winguth 1990. Immunoprecipitation of proteins. Methods Enzymol. 182: 688–700.
  • Georgopoulos, C. 1992. The emergence of chaperone machines. Trends Biochem. Sci. 17: 295–299.
  • Gordon, S., S. Bharadwaj, A. Hnatov, A. Ali, and N. Ovsenek 1997. Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes. Dev. Biol. 181: 47–63.
  • Gradin, K., J. McGuire, R. H. Wenger, I. Kvietikova, M. L. Whitelaw, R. Toftgard, L. Tora, M. Gassmann, and L. Poellinger 1996. Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol. Cell. Biol. 16: 5221–5231.
  • Green, M., T. J. Schuetz, E. K. Sullivan, and R. E. Kingston 1995. A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol. Cell. Biol. 15: 3354–3362.
  • Grenert, J. P., W. P. Sullivan, P. Fadden, T. A. J. Haystead, J. Clark, E. Mimnaugh, H. Krutzsch, H. J. Ochel, T. W. Schulte, E. Sausville, L. M. Neckers, and D. O. Toft 1997. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J. Biol. Chem. 272: 23843–23850.
  • Hartson, S. D., E. A. Ottinger, W. Huang, G. Barany, P. Burn, and R. L. Matts 1998. Modular folding and evidence for phosphorylation-induced stabilization of an Hsp90-dependent kinase. J. Biol. Chem. 273: 8475–8482.
  • Hartson, S. D., D. J. Barrett, P. Burn, and R. L. Matts 1996. Hsp90-mediated folding of the lymphoid cell kinase p56lck. Biochemistry 35: 13451–13459.
  • Hendrick, J. P., and F. U. Hartl 1993. Molecular chaperone functions of heat shock proteins. Annu. Rev. Biochem. 62: 349–384.
  • Holmberg, C. I., S. Leppa, J. E. Eriksson, and L. Sistonen 1997. The phorbol ester 12-O-tetradecanoylphorbol 13-acetate enhances the heat-induced stress response. J. Biol. Chem. 272: 6792–6798.
  • Horrell, A., J. Shuttleworth, and A. Coleman 1987. Transcript levels and translational control of hsp70 synthesis in Xenopus oocytes. Genes Dev. 1: 433–444.
  • Jakob, U., and J. Buchner 1994. Assisting spontaneity: the role of hsp90 and small hsps as molecular chaperones. Trends Biochem. Sci. 19: 205–211.
  • Kim, J., A. Nueda, Y. H. Meng, W. S. Dynan, and N. F. Michevi 1997. Analysis of phosphorylation of human heat shock transcription factor-1 by MAPK family members. J. Cell. Biochem. 67: 43–54.
  • Kline, M. P., and R. I. Morimoto 1997. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol. Cell. Biol. 17: 2107–2115.
  • Knauf, U., E. M. Newton, J. Kryiakis, and R. E. Kingston 1996. Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev. 10: 2782–2793.
  • Landsberger, N., M. Ranjan, G. Almouzni, D. Stump, and A. P. Wolffe 1995. The heat shock response in Xenopus oocytes, embryos, and somatic cells: a regulatory role for chromatin. Dev. Biol. 170: 62–74.
  • Lis, J., and C. Wu 1993. Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell 74: 1–4.
  • Mager, W. H., and A. J. J. DeKruijff 1995. Stress-induced transcriptional activation. Microbiol. Rev. 59: 506–531.
  • Melnick, J., S. Aviel, and Y. Argon 1992. The endoplasmic reticulum stress protein GRP94, in addition to BiP, associates with unassembled immunoglobulin chains. J. Biol. Chem. 267: 21303–21306.
  • Mercier, P. A., J. Foksa, N. Ovsenek, and J. T. Westwood 1997. Xenopus heat shock factor 1 is a nuclear protein before heat stress. J. Biol. Chem. 272: 14147–14151.
  • Meyer, D., and N. Ovsenek. Unpublished results.
  • Mifflin, L. C., and R. E. Cohen 1994. hsc70 moderates the heat shock (stress) response in Xenopus laevis oocytes and binds to denatured protein inducers. J. Biol. Chem. 269: 15718–15723.
  • Minami, Y., H. Kawasaki, Y. Miyata, K. Suzuki, and I. Yahara 1991. Analysis of native forms and isoform compositions of the mouse 90-kDa heat shock protein, HSP90. J. Biol. Chem. 266: 10099–10103.
  • Morimoto, R. I. 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259: 1409–1410.
  • Morimoto, R. I., A. Tissiers, and C. Georgopoulos 1994. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Mosser, D. D., J. Duchaine, and B. Massie 1993. The DNA-binding activity of the human heat shock transcription factor is regulated in vivo by hsp70. Mol. Cell. Biol. 13: 5427–5438.
  • Nadeau, K., A. Das, and C. T. Walsh 1993. Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. J. Biol. Chem. 268: 1479–1487.
  • Nair, S. C., E. J. Toran, R. A. Rimerman, S. Hjermstad, T. E. Smithgall, and D. F. Smith 1996. A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor HSF1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 1: 237–250.
  • Nakai, A., and R. I. Morimoto 1993. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell. Biol. 13: 1983–1997.
  • Nemoto, T., Y. Ohara-Nemoto, M. Ota, T. Takagi, and K. Yokoyama 1995. Mechanism of dimer formation of the 90-kDa heat-shock protein. Eur. J. Biochem. 233: 1–8.
  • Newton, E. M., U. Knauf, M. Green, and R. E. Kinston 1996. The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress. Mol. Cell. Biol. 16: 839–846.
  • Nunes, S. L., and S. K. Calderwood 1995. Heat shock factor 1 and the heat shock cognate 70 protein associate in high molecular weight complexes in the cytoplasm of NIH-3T3 cells. Biochem. Biophys. Res. Commun. 213: 1–6.
  • Orosz, A., J. Wisniewski, and C. Wu 1996. Regulation of Drosophila heat shock factor trimerization: global sequence requirements and independence of nuclear localization. Mol. Cell. Biol. 16: 7018–7030.
  • Ovsenek, N., and J. J. Heikkila 1990. DNA sequence specific binding activity of the Xenopus heat shock transcription factor is heat inducible before the midblastula transition. Development 110: 427–433.
  • Pratt, W. B., and M. J. Welsh 1994. Chaperone functions of the heat shock proteins associated with steroid receptors. Semin. Cell Biol. 5: 83–93.
  • Prodromou, C., S. M. Roe, R. O’Brien, J. E. Ladbury, P. W. Piper, and L. H. Pearl 1997. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90: 65–75.
  • Rabindran, S. K., G. Giorgi, J. Clos, and C. Wu 1991. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl. Acad. Sci. USA 88: 6906–6910.
  • Rabindran, S. K., R. I. Haroun, J. Clos, J. Wisniewski, and C. Wu 1993. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259: 230–234.
  • Rabindran, S. K., J. Wisniewski, L. Li, G. C. Li, and C. Wu 1994. Interaction between heat shock factor and hsp70 is insufficient to supress induction of DNA-binding activity in vivo. Mol. Cell. Biol. 14: 6552–6520.
  • Sarge, K. D., S. P. Murphy, and R. I. Morimoto 1993. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13: 1392–1407.
  • Schneider, C., L. Sepp-Lorenzio, E. Nimmesgern, O. Ouerfelli, S. Danishefsky, R. Rosen, and F. U. Hartl 1996. Pharmacologic shifting of a balance between protein refolding and degradation mediated by hsp90. Proc. Natl. Acad. Sci. USA 93: 14536–14541.
  • Schulte, T. W., M. V. Blagosklonny, C. Ingui, and L. Neckers 1995. Disruption of the Raf-1-hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J. Biol. Chem. 270: 24585–24588.
  • Shaknovich, R., G. Shue, and D. S. Kohtz 1992. Conformational activation of a basic helix-loop-helix protein (MyoD1) by the C-terminal region of murine HSP90 (HSP84). Mol. Cell. Biol. 12: 5059–5068.
  • Shi, Y., P. E. Kroeger, and R. I. Morimoto 1995. The carboxyl-terminal domain of heat shock factor 1 is negatively regulated and stress responsive. Mol. Cell. Biol. 15: 4309–4318.
  • Shi, Y., J. S. Lee, and K. M. Gavin 1997. Everything you have ever wanted to know about Yin Yang 1. Biochim. Biophys. Acta 1332: 49–66.
  • Shi, Y., D. D. Mosser, and R. I. Morimoto 1998. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12: 654–666.
  • Shue, G., and D. S. Kohtz 1994. Structural and functional aspects of basic helix-loop-helix protein folding by heat-shock protein 90. J. Biol. Chem. 269: 2707–2711.
  • Smith, D. F. 1993. Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol. Endocrinol. 7: 1418–1429.
  • Smith, D. F., M. W. Albers, S. L. Schreiber, K. L. Leach, and M. R. Deibel 1993. FKBP54, a novel FK506-binding protein in avian progesterone receptor complexes and HeLa extracts. J. Biol. Chem. 268: 24270–24273.
  • Smith, D. F., L. Whitesell, S. Nair, S. Chen, V. Prapapanich, and R. A. Rimerman 1995. Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol. Cell. Biol. 15: 6804–6812.
  • Sorger, P. K. 1990. Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62: 793–805.
  • Stebbins, C. E., A. A. Russo, C. Schneider, N. Rosen, F. U. Hartl, and N. P. Pavletich 1997. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 18: 239–250.
  • Thalasiraman, V., and R. L. Matts 1996. Effect of geldanamycin on the kinetics of chaperone-mediated renaturation of firefly luciferase in rabbit reticulocyte lysate. Biochemistry 35: 13443–13450.
  • Uma, S., S. D. Hartson, J. J. Chen, and R. L. Matts 1997. Hsp90 is obligatory for the heme-regulated eIF-2a kinase to acquire and maintain an activatable conformation. J. Biol. Chem. 272: 11648–11656.
  • Westwood, J. T., and C. Wu 1993. Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol. Cell Biol. 13: 3481–3486.
  • Whitesell, L., E. G. Mimnaugh, B. DeCosta, C. Myers, and L. M. Neckers 1994. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by bezoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl. Acad. Sci. USA 91: 8324–8328.
  • Winegarden, N. A., K. S. Wong, M. Sopta, and J. T. Westwood 1996. Sodium salicylate decreases intracellular ATP, induces both heat shock factor binding and chromosomal puffing, but does not induce hsp70 gene transcription in Drosophila. J. Biol. Chem. 271: 26971–26980.
  • Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11: 441–469.
  • Xia, W., and R. Voellmy 1997. Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor trimers. J. Biol. Chem. 272: 4094–4102.
  • Zou, J., R. Baler, G. Dahl, and R. Voellmy 1994. Activation of the DNA-binding ability of human heat shock factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol. Cell. Biol. 14: 7557–7568.
  • Zou, J., D. Rungger, and R. Voellmy 1995. Multiple levels of regulation of human heat shock transcription factor 1. Mol. Cell. Biol. 15: 4319–4330.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.