7
Views
100
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Transcriptional Repression by the SMRT-mSin3 Corepressor: Multiple Interactions, Multiple Mechanisms, and a Potential Role for TFIIB

&
Pages 5500-5510 | Received 22 Jan 1998, Accepted 11 Jun 1998, Published online: 28 Mar 2023

REFERENCES

  • Alland, L., R. Muhle, H. Hou, J. Potes, L. Chin, N. Schreiber-Agus, and R. A. DePinho 1997. Role of N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387: 49–55.
  • Ayer, D. E., L. Kretzner, and R. N. Eisenman 1993. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72: 211–222.
  • Bagy, L., H.-Y. Kao, D. Chakravarti, R. J. Lin, C. A. Hassig, D. E. Ayer, S. L. Schreiber, and R. M. Evans 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A and histone deacetylase. Cell 89: 373–380.
  • Baniahmad, A., A. C. Kohne, and R. Renkawitz 1992. A transferable silencing domain is present in the thyroid hormone receptor, in the v-Erb A oncogene product, and in the retinoic acid receptor. EMBO J. 11: 1015–1023.
  • Baniahmad, A., I. Ha, D. Reinberg, S. Y. Tsai, M.-J. Tsai, and B. W. O’Malley 1993. Interaction of human thyroid hormone receptor beta with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. Proc. Natl. Acad. Sci. USA 90: 8832–8836.
  • Baniahmad, A., X. Leng, T. P. Burris, S. Y. Tsai, M. J. Tsai, and B. W. O’Malley 1995. The τ4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing. Mol. Cell. Biol. 15: 76–86.
  • Casanova, J., E. Helmer, S. Selmi-Ruby, J. S. Qi, M. Au-Flieger, V. Desai-Yajnik, N. Koudinova, F. Yarm, B. M. Raaka, and H. H. Samuels 1994. Functional evidence for ligand-dependent dissociation of thyroid hormone and retinoid acid receptors from an inhibitory cellular factor. Mol. Cell. Biol. 14: 5756–5765.
  • Chen, H.-W., and M. L. Privalsky 1993. The erbA oncogene represses the actions of both retinoid X and retinoid A receptors but does so by distinct mechanisms. Mol. Cell. Biol. 13: 5970–5980.
  • Chen, H.-W., and M. L. Privalsky 1997. Retinoid X and retinoic acid receptors interact with TFIIB by distinct mechanisms. Mol. Cell. Endocrinol. 129: 55–61.
  • Chen, J. D., and R. M. Evans 1995. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377: 454–457.
  • Chen, J. D., K. Umesono, and R. M. Evans 1996. SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers. Proc. Natl. Acad. Sci. USA 93: 7567–7571.
  • Damm, K., C. C. Thompson, and R. M. Evans 1989. Protein encoded by v-Erb A functions as a thyroid hormone receptor antagonist. Nature 339: 593–597.
  • DeRurbertis, F., D. Kadosh, S. Henchoz, D. Pauli, G. Reuter, K. Struhl, and P. Spierer 1991. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384: 589–591.
  • Dhordain, P., O. Albagli, R. J. Lin, S. Ansieau, S. Quief, A. Leutz, J. P. Kerckaert, R. M. Evans, and D. Leprince 1997. Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL-6 oncoprotein. Proc. Natl. Acad. Sci. USA 94: 10762–10767.
  • Downes, M., L. J. Burke, P. J. Bailey, and G. E. Muscat 1996. Two receptor interaction domains in the corepressor, N-CoR/RIP13, are required for an efficient interaction with Rev-erbA alpha and RVR: physical association is dependent on the E region of the orphan receptors. Nucleic Acids Res. 2: 4379–4386.
  • Felsenfeld, G. 1996. Chromatin unfolds. Cell 86: 13–19.
  • Fondell, J. D., A. L. Roy, and R. G. Roeder 1993. Unliganded thyroid hormone receptor inhibits formation of a functional preinitiation complex: implications for active repression. Genes Dev. 7: 1400–1410.
  • Fondell, J. D., F. Brunel, K. Hisatake, and R. G. Roeder 1996. Unliganded thyroid hormone receptor a can target TATA-binding protein for transcriptional repression. Mol. Cell. Biol. 16: 281–287.
  • Grignani, F., S. De Matteis, C. Nervi, L. Tomassoni, V. Gelmetti, M. Cioce, M. Fanelli, M. Ruthardt, F. F. Ferrara, I. Zamir, C. Seiser, F. Grignani, M. A. Lazar, S. Minucci, and P. G. Pelicci 1998. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukemia. Nature 391: 815–818.
  • Guan, K. L., and J. E. Dixon 1991. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192: 262–267.
  • Hassig, C. A., T. C. Fleischer, A. N. Billin, S. L. Schreiber, and D. E. Ayer 1997. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89: 341–347.
  • Heinzel, T., R. M. Lavinsky, T.-M. Mullen, M. Soderstrom, C. D. Laherty, J. Torchia, W.-M. Yang, G. Brard, S. G. Ngo, J. R. Davie, E. Seto, R. N. Eisenman, D. W. Rose, C. K. Glass, and M. G. Rosenfeld 1997. A complex containing N-CoR, mSin3, and histone deacetylase mediates transcriptional repression. Nature 387: 43–48.
  • Hong, S.-H., G. David, C. W. Wong, A. Dejean, and M. L. Privalsky 1997. SMRT corepressor interacts with PLZF, and with the PML-RARα and PLZF-RARα oncoproteins associated with acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 94: 9028–9033.
  • Horlein, A. J., A. M. Naar, T. Heinzel, J. Torchia, B. Gloss, R. Kurokawa, A. Ryan, Y. Kamel, M. Soderstrom, C. K. Glass, and M. G. Rosenfeld 1995. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397–404.
  • Horwitz, K. B., T. A. Jackson, D. L. Bain, J. K. Richer, G. S. Takimoto, and L. Tung 1996. Nuclear hormone receptor coactivators and corepressors. Mol. Endocrinol. 10: 1167–1177.
  • Jackson, T. A., J. K. Richer, D. L. Bain, G. S. Takimoto, L. Tung, and K. B. Horwitz 1997. The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol. Endocrinol. 11: 693–705.
  • Johnston, L. A., S. J. Tapscott, and H. Eisen 1992. Sodium butyrate inhibits myogenesis by interfering with transcriptional activation functions of MyoD and myogenin. Mol. Cell. Biol. 12: 5123–5130.
  • Kadosh, D., and K. Struhl 1997. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89: 365–371.
  • Kurokawa, R., M. Soderstrom, A. Horlein, S. Halachmi, M. Brown, M. G. Rosenfeld, and C. K. Glass 1995. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377: 451–454.
  • Laherty, C. D., W.-M. Yang, J.-M. Sun, J. R. Davie, E. Seto, and R. N. Eisenman 1997. Histone deacetylases associated with the mSin3A corepressor mediate Mad transcriptional repression. Cell 89: 349–356.
  • Li, H., C. Leo, D. J. Schroen, and J. D. Chen 1997. Characterization of receptor interaction and transcriptional repression by the corepressor SMRT. Mol. Endocrinol. 11: 2025–2037.
  • Lin, R. J., L. Nagy, S. Inoue, W. Shao, Miller W. H., Jr., and R. M. Evans 1998. Role of the histone deacetylase complex in acute promyelocytic leukemia. Nature 391: 811–814.
  • Luo, R. X., A. A. Postigo, and D. C. Dean 1998. Rb interacts with histone deacetylase to repress transcription. Cell 92: 463–473.
  • McKenzie, E. A., N. A. Kent, S. J. Dowell, F. Moreno, L. E. Bird, and J. Mellor 1993. The centromere and promoter factor 1, CPF1, of Saccharomyces cerevisiae modulates gene activity through a family of factors, including SPT21, RPD1(DIN3), RPD3, and CCR4. Mol. Gen. Genet. 240: 374–386.
  • McKnight, G. S., L. Hager, and R. D. Palmiter 1980. Butyrate and related inhibitors of histone deacetylase block the induction of egg white genes by steroid hormones. Cell 22: 469–477.
  • Muscat, G. E. O., L. J. Burke, and M. Downes 1998. The corepressor N-CoR and its variants RIP13a and RIPΔ1 directly interact with the basal transcription factors TFIIB, TAFII32, and TAFII70. Nucleic Acids Res. 26: 2899–2907.
  • Nasmyth, K., D. Stillman, and D. Kipling 1987. Both positive and negative regulators of HO transcription are required for mother-cell-specific mating type switching in yeast. Cell 48: 579–589.
  • Pazin, M. J., and J. T. Kadonaga 1997. What’s up and down with histone deacetylation and transcription? Cell 89: 325–328.
  • Rundlett, S. E., A. A. Carmen, R. Kobayashi, S. Bavykin, B. M. Turner, and M. Grunstein 1996. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl. Acad. Sci. USA 93: 14503–14508.
  • Sande, S., and M. L. Privalsky 1996. Identification of TRACs (T3 receptor-associating cofactors) a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol. Endocrinol. 10: 813–825.
  • Sap, J., A. Munoz, H. Schmitt, H. Stunnenberg, and B. Vennstrom 1989. Repression of transcription mediated by a thyroid hormone response element by the v-Erb A oncogene product. Nature 340: 242–244.
  • Schreiber-Agus, N., L. Chin, K. Chen, R. Torres, G. Rao, P. Guida, A. I. Skoultichi, and R. A. DePinho 1995. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80: 777–786.
  • Seol, W., M. J. Mahon, Y. K. Lee, and D. D. Moore 1996. Two receptor interacting domains in the nuclear hormone receptor corepressor RIP13/N-CoR. Mol. Endocrinol. 10: 1646–1655.
  • Shibata, H., Z. Nawaz, S. Y. Tsai, and B. W. O’Malley 1997. Gene silencing by COUP-TF is mediated by transcriptional corepressors, N-CoR and SMRT. Mol. Endocrinol. 11: 714–724.
  • Smith, C. L., Z. Nawaz, and B. W. O’Malley 1997. Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogn, 4-hydroxytamoxifen. Mol. Endocrinol. 11: 657–666.
  • Sternberg, P. W., M. J. Stern, I. Clark, and I. Herskowitz 1987. Activation of the yeast HO gene by release from multiple positive and negative controls. Cell 48: 567–577.
  • Stillman, D. J., S. Dorland, and Y. Yu 1994. Epistasis analysis of suppressor mutations that allow HO expression in the absence of the yeast SWI5 transcriptional activator. Genetics 136: 781–788.
  • Sussel, L., D. Vannier, and D. Shore 1995. Suppressors of defective silencing in yeast: effects on transcriptional repression at the HMR locus, cell growth, and telomere structure. Genetics 141: 873–888.
  • Vidal, M., and R. F. Gaber 1991. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 6317–6327.
  • Wade, P. A., D. Pruss, and A. P. Wolffe 1997. Histone acetylation: chromatin in action. Trends Biochem. Sci. 22: 128–132.
  • Wang, H., and D. J. Stillman 1993. Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Mol. Cell. Biol. 13: 1805–1814.
  • Wolffe, A. P. 1997. Sinful repression. Nature 387: 16–17.
  • Wong, C.-W., and M. L. Privalsky. Submitted for publication.
  • Yang, W.-M., C. Inouye, Y. Zeng, D. Bearss, and E. Seto 1996. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulatory RPD3. Proc. Natl. Acad. Sci. USA 93: 12845–12850.
  • Yoshida, M., S. Horinouchi, and T. Beppu 1995. Trichostatin A and trapoxin: novel chemical probes for the role of histone deacetylation in chromatin structure and function. Bioessays 17: 423–430.
  • Zamir, I., H. P. Harding, G. B. Atkins, A. Horlein, C. K. Glass, M. Rosenfeld, and M. A. Lazar 1996. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol. Cell. Biol. 16: 5458–5465.
  • Zamir, I., J. Dawson, R. M. Lavinsky, C. K. Glass, M. G. Rosenfeld, and M. A. Lazar 1997. Cloning and characterization of a corepressor and potential component of the nuclear hormone receptor repression complex. Proc. Natl. Acad. Sci. USA 94: 14400–14411.
  • Zamir, I., J. Zhang, and M. A. Lazar 1997. Stoichiometric and steric principles governing repression by nuclear hormone receptors. Genes Dev. 11: 835–846.
  • Zervos, A. S., J. Gyuris, and R. Brent 1993. Mxi 1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 72: 223–232.
  • Zhang, J., I. Zamir, and M. A. Lazar 1997. Differential recognition of liganded and unliganded thyroid hormone receptor by retinoid X receptor-regulated transcriptional repression. Mol. Cell. Biol. 17: 6887–6897.
  • Zhang, Y., R. Iratni, H. Erdjument-Bromage, P. Tempst, and D. Reinberg 1997. Histone deacetylases and SAP18 a novel polypeptide, are components of a human Sin3 complex. Cell 89: 357–364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.