88
Views
331
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Regulation of the MEF2 Family of Transcription Factors by p38

, , , , , , , & show all
Pages 21-30 | Received 13 Aug 1998, Accepted 24 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Black, B. L., J. D. Molkentin, and J. Olson 1998. Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2. Mol. Cell. Biol. 18:69–77.
  • Black, B., and E. Olson. Transcription control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol., in press.
  • Boyle, W. J., P. VanDerGeer, and J. Hunter 1991. Phosphopeptide mapping and phosphoamino acid analysis by two dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201:110–148.
  • Cuenda, A., P. Cohen, V. Buee-Scherrer, and J. Goedert 1997. Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparison of the specificities of SAPK3 and SAPK2 (RK/p38). EMBO J. 16:295–305.
  • Davis, R. J. 1994. MAPKs: new JNK expands the group. Trends Biochem. Sci. 19:470–473.
  • Derijard, B., J. Raingeaud, T. Barrett, I. Wu, J. Han, R. J. Ulevitch, and J. Davis 1995. Independent human MAP kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267:682–685.
  • Fanger, G. R., P. Gerwins, C. Widmann, M. B. Jarpe, and J. Johnson 1997. MEKKs, GCKs, MLKs, PAKs, TAKs, and Tpls: upstream regulators of the c-Jun amino-terminal kinases? Curr. Opin. Genet. Dev. 7:67–74.
  • Fukunaga, R., and J. Hunter 1997. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16:1921–1933.
  • Gupta, S., D. Campbell, B. Derijard, and J. Davis 1995. Transcription Factor ATF2 regulation by the JNK signal transduction pathway. Science 267:389–393.
  • Han, J., Y. Jiang, Z. Li, V. V. Kravchenko, and J. Ulevitch 1997. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386:296–299.
  • Han, J., J.-D. Lee, L. Bibbs, and J. Ulevitch 1994. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808–811.
  • Han, J., J.-D. Lee, Y. Jiang, Z. Li, L. Feng, and J. Ulevitch 1996. Characterization of the structure and function of a novel MAP kinase kinase (MKK6). J. Biol. Chem. 271:2886–2891.
  • Han, J., J. D. Lee, P. S. Tobias, and J. Ulevitch 1993. Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. J. Biol. Chem. 268:25009–25014.
  • Han, J., X. Wang, Y. Jiang, R. J. Ulevitch, and J. Lin 1996. Identification and characterization of a predominant isoform of human MKK3. FEBS Lett. 403:19–22.
  • Han, T.-H., and J. Prywes 1995. Regulatory role of MEF2D in serum induction of the c- jun promoter. Mol. Cell. Biol. 15:2907–2915.
  • Janknecht, R., and J. Hunter 1997. Convergence of MAP kinase pathways on the ternary complex factor Sap-1a. EMBO J. 16:1620–1627.
  • Jiang, Y., H. Gram, M. Zhao, L. New, J. Gu, L. Feng, F. Padova, R. Ulevitch, and J. Han 1997. Characterization of the structure and function of the fourth member of p38 group MAP kinase-p38δ. J. Biol. Chem. 272:30122–30128.
  • Jiang, Y., C. Chen, Z. Li, W. Guo, J. A. Gegner, S. Lin, and J. Han 1996. Characterization of the structure and function of a new mitogen-activated protein kinase (p38β). J. Biol. Chem. 271:17920–17926.
  • Kato, Y., V. Kravchenko, R. Tapping, J. Han, R. Ulevitch, and J. Lee 1997. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 16:7054–7066.
  • Kato, Y., et al. Unpublished data.
  • Kramer, R. M., E. F. Roberts, S. L. Um, A. G. Borsch-Haubold, S. P. Watson, M. J. Fisher, and J. Jakubowski 1996. p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J. Biol. Chem. 271:27723–27729.
  • Kravchenko, V. V., Z. Pan, J. Han, J.-M. Herbert, R. J. Ulevitch, and J. Ye 1995. Platelet-activating factor induces NF-κB activation through a G protein-coupled pathway. J. Biol. Chem. 270:14928–14934.
  • Lechner, C., M. A. Zahalka, J.-F. Giot, N. P. H. Moler, and J. Ullrich 1996. ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc. Natl. Acad. Sci. USA 93:4355–4359.
  • Lee, J. C., J. T. Laydon, P. C. McDonnell, T. F. Gallagher, S. Kumar, D. Green, D. McNulty, M. J. Blumenthal, R. J. Heyes, S. W. Landvatter, J. E. Strickler, M. M. McLaughlin, I. Siemens, S. Fisher, G. P. Livi, J. R. White, J. L. Adams, and J. Young 1994. Identification and characterization of a novel protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739–746.
  • Li, Z., Y. Jiang, R. J. Ulevitch, and J. Han 1996. The primary structure of p38gamma: a new member of p38 group of MAP kinase. Biochem. Biophys. Res. Commun. 228:334–340.
  • Lilly, B., B. Zhao, G. Ranganayakulu, B. M. Paterson, R. A. Schulz, and J. Olson 1995. Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science 267:688–693.
  • Lin, Q., J. Schwarz, C. Bucana, and J. Olson 1997. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407.
  • Ludwig, S., K. Engel, A. Hoffmeyer, G. Sithanandam, B. Neufeld, D. Palm, M. Gaestel, and J. Rapp 1996. 3pK, a novel mitogen-activated protein (MAP) kinase-activated protein kinase, is targeted by three MAP kinase pathways. Mol. Cell. Biol. 16:6687–6697.
  • Martin, J. F., J. M. Miano, C. M. Hustad, N. G. Copeland, N. A. Jenkins, and J. Olson 1994. A Mef2 gene that generates a muscle-specific isoform via alternative mRNA splicing. Mol. Cell. Biol. 14:1647–1656.
  • McLaughlin, M. M., S. Kumar, P. C. McDonnell, S. Van Horn, J. C. Lee, G. P. Livi, and J. Young 1996. Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J. Biol. Chem. 271:8488–8492.
  • Mertens, S., M. Craxton, and J. Goedert 1996. SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases. FEBS Lett. 383:273–276.
  • Molkentin, J. D., B. L. Black, J. F. Martin, and J. Olson 1995. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83:1125–1136.
  • Molkentin, J. D., L. Li, and J. Olson 1996. Phosphorylation of the MADS-box transcription factor MEF2C enhances its DNA binding activity. J. Biol. Chem. 271:17199–17204.
  • New, L., Y. Jiang, M. Zhao, K. Liu, W. Zhu, L. J. Flood, Y. Kato, G. C. Parry, and J. Han 1998. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J. 17:3372–3384.
  • Olson, E. N., M. Perry, and J. Schulz 1995. Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev. Biol. 172:2–14.
  • Ornatsky, O. I., and J. McDermott 1996. MEF2 protein expression, DNA binding specificity and complex composition, and transcriptional activity in muscle and non-muscle cells. J. Biol. Chem. 271:24927–24933.
  • Puri, P. L., et al. Personal communication.
  • Raingeaud, J., S. Gupta, J. S. Rogers, M. Dickens, J. Han, R. J. Ulevitch, and J. David 1995. Pro-inflammatory cytokines and environmental stress cause p38 MAP kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270:7420–7426.
  • Raingeaud, J., A. J. Whitmarsh, T. Barrett, B. Derijard, and J. Davis 1996. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell. Biol. 16:1247–1255.
  • Robinson, M. J., and J. Cobb 1997. Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 9:180–186.
  • Rouse, J., P. Cohen, S. Trigon, M. Morange, A. Alonso-Llamazares, D. Zamanillo, T. Hunt, and J. Nebreda 1994. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78:1027–1037.
  • Su, B., and J. Karin 1996. Mitogen-activated protein kinase cascades and regulation of gene expression. Curr. Opin. Immunol. 8:402–411.
  • Wang, X. S., K. Diener, C. L. Manthey, S. Wang, B. Rosenzweig, J. Bray, J. Delaney, C. N. Cole, P. Y. Chan-Hui, N. Mantlo, H. S. Lichenstein, M. Zukowski, and J. Yao 1997. Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J. Biol. Chem. 272:23668–23674.
  • Wang, X.-Z., and J. Ron 1996. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase. Science 272:1347–1349.
  • Wang, Y., S. Huang, V. Sah, J. Ross, J. Brown, J. Han, and J. Chien 1998. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of p38 mitogen-activated protein kinase family. J. Biol. Chem. 273:2161–2168.
  • Waskiewicz, A. J., and J. Cooper 1995. Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast. Curr. Opin. Cell Biol. 7:798–805.
  • Waskiewicz, A. J., A. Flynn, C. G. Proud, and J. Cooper 1997. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16:1909–1920.
  • Yu, Y.-T., R. E. Breitbart, L. B. Smoot, Y. Lee, V. Mahdavi, and J. Nadal-Ginard 1992. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 6:1783–1798.
  • Zechner, D., D. J. Thuerauf, D. S. Hanford, P. M. McDonough, and J. Glembotski 1997. A role for the p38 mitogen-activated protein kinase pathway in myocardial cell growth, sarcomeric organization, and cardiac-specific gene expression. J. Cell Biol. 139:115–127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.