21
Views
128
CrossRef citations to date
0
Altmetric
Gene Expression

Multiple Distinct Splicing Enhancers in the Protein-Coding Sequences of a Constitutively Spliced Pre-mRNA

&
Pages 261-273 | Received 29 Jul 1998, Accepted 28 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Abmayr, S. M., and J. Workman 1987. Preparation of nuclear and cytoplasmic extracts from mammalian cells. Current protocols in molecular biology In F. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl (ed.), 2: Greene Publishing Associates and Wiley-Interscience, New York, N.Y.
  • Adams, M. D., D. Z. Rudner, and J. Rio 1996. Biochemistry and regulation of pre-mRNA splicing. Curr. Opin. Cell Biol. 8:331–339.
  • Amrein, H., M. L. Hedley, and J. Maniatis 1994. The role of specific protein-RNA and protein-protein interactions in positive and negative control of pre-mRNA splicing by Transformer 2. Cell 76:735–746.
  • Bennett, M., S. Pinol-Roma, D. Staknis, G. Dreyfuss, and J. Reed 1992. Differential binding of heterogeneous nuclear ribonucleoproteins to mRNA precursors prior to spliceosome assembly in vitro. Mol. Cell. Biol. 12:3165–3175.
  • Berget, S. M. 1995. Exon recognition in vertebrate splicing. J. Biol. Chem. 270:2411–2414.
  • Black, D. L. 1995. Finding splice sites within a wilderness of RNA. RNA 1:763–771.
  • Blencowe, B. J., J. A. Nickerson, R. Issner, S. Penman, and J. Sharp 1994. Association of nuclear matrix antigens with exon-containing splicing complexes. J. Cell Biol. 127:593–607.
  • Caceres, J. F., and J. Krainer 1993. Functional analysis of pre-mRNA splicing factor SF2/ASF structural domains. EMBO J. 12:4715–4726.
  • Chandler, S. D., A. Mayeda, J. M. Yeakley, A. R. Krainer, and J. Fu 1997. RNA splicing specificity determined by the coordinated action of RNA recognition motifs in SR proteins. Proc. Natl. Acad. Sci. USA 94:3596–3601.
  • Chiara, M.D., O. Gozani, M. Bennett, P. Champion-Arnaud, L. Palandjian, and J. Reed 1996. Identification of proteins that interact with exon sequences, splice sites, and the branchpoint sequence during each stage of spliceosome assembly. Mol. Cell. Biol. 16:3317–3326.
  • Dignam, J. D., R. M. Lebovitz, and J. Roeder 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Dominski, Z., and J. Kole 1994. Identification of exon sequences involved in splice site selection. J. Biol. Chem. 269:23590–23596.
  • Dominski, Z., and J. Kole 1991. Selection of splice sites in pre-mRNAs with short internal exons. Mol. Cell. Biol. 11:6075–6083.
  • Fu, X. D. 1995. The superfamily of arginine/serine-rich splicing factors. RNA 1:663–680.
  • Furdon, P. J., and J. Kole 1988. The length of the downstream exon and the substitution of specific sequences affect pre-mRNA splicing in vitro. Mol. Cell. Biol. 8:860–866.
  • Grabowski, P. J., F. H. Nasim, H.-C. Kuo, and J. Burch 1991. Combinatorial splicing of exon pairs by two-site binding of U1 small nuclear ribonucleoprotein particle. Mol. Cell. Biol. 11:5919–5928.
  • Graveley, B., K. Hertel, and T. Maniatis. A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. EMBO J., in press.
  • Graveley, B. R., and J. Maniatis 1998. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol. Cell. 1:765–771.
  • Hedley, M. L., H. Amrein, and J. Maniatis 1995. An amino acid sequence motif sufficient for subnuclear localization of an arginine/serine-rich splicing factor. Proc. Natl. Acad. Sci. USA 92:11524–11528.
  • Heinrichs, V., L. C. Ryner, and J. Baker 1998. Regulation of sex-specific selection of fruitless 5′ sites by transformer and transformer-2. Mol. Cell. Biol. 18:450–458.
  • Hertel, K. J., K. W. Lynch, and J. Maniatis 1997. Common themes in the function of transcription and splicing enhancers. Curr. Opin. Cell Biol. 9:350–357.
  • Hertel, K. J., and J. Maniatis 1998. The function of multisite splicing enhancers. Mol. Cell 1:449–455.
  • Hoffman, B. E., and J. Grabowski 1992. snRNP targets an essential splicing factor, U2AF65, to the 3′ splice site by a network of interactions spanning the exon. Genes Dev. 6:2554–2568.
  • Kohtz, J. D., S. F. Jamison, C. L. Will, P. Zuo, R. Lührmann, M. A. Garcia-Blanco, and J. Manley 1994. Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 368:119–124.
  • Kuo, H. C., F. H. Nasim, and J. Grabowski 1991. Control of alternative splicing by the differential binding of U1 small nuclear ribonucleoprotein particle. Science 251:1045–1050.
  • Lavigueur, A., H. La Branche, A. R. Kornblihtt, and J. Chabot 1993. A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev. 7:2405–2417.
  • Liu, H. X., M. Zhang, and J. Krainer 1998. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 12:1998–2012.
  • Lynch, K. W., and J. Maniatis 1996. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev. 10:2089–2101.
  • Lynch, K. W., and J. Maniatis 1995. Synergistic interactions between two distinct elements of a regulated splicing enhancer. Genes Dev. 9:284–293.
  • Manley, J. L., and J. Tacke 1996. SR proteins and splicing control. Genes Dev. 10:1569–1579.
  • Moore, M. J., and J. Sharp 1992. Site-specific modification of pre-mRNA: the 2′-hydroxyl groups at the splice sites. Science 256:992–997.
  • Moras, D., and J. Poterszman 1995. RNA-protein interactions. Diverse modes of recognition. Curr. Biol. 5:249–251.
  • Nelson, K. K., and J. Green 1988. Splice site selection and ribonucleoprotein complex assembly during in vitro pre-mRNA splicing. Genes Dev. 2:319–329.
  • Parent, A., S. Zeitlin, and J. Efstratiadis 1987. Minimal exon sequence requirements for efficient in vitro splicing of mono-intronic nuclear pre-mRNA. J. Biol. Chem. 262:11284–11291.
  • Reed, R. 1996. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr. Opin. Genet. Dev. 6:215–220.
  • Reed, R., J. Griffith, and J. Maniatis 1988. Purification and visualization of native spliceosomes. Cell 53:949–961.
  • Reed, R., and J. Maniatis 1986. A role for exon sequences and splice-site proximity in splice-site selection. Cell 46:681–690.
  • Robberson, B. L., G. J. Cote, and J. Berget 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10:84–94.
  • Schaal, T. D., and T. Maniatis. Unpublished data.
  • Singh, R., J. Valcarcel, and J. Green 1995. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268:1173–1176.
  • Somasekhar, M. B., and J. Mertz 1985. Exon mutations that affect the choice of splice sites used in processing the SV40 late transcripts. Nucleic Acids Res. 13:5591–5609.
  • Staknis, D., and J. Reed 1994. SR proteins promote the first specific recognition of pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol. Cell. Biol. 14:7670–7682.
  • Sun, Q., A. Mayeda, R. K. Hampson, A. R. Krainer, and J. Rottman 1993. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev. 7:2598–2608.
  • Talerico, M., and J. Berget 1990. Effect of 5′ splice site mutations on splicing of the preceding intron. Mol. Cell. Biol. 10:6299–6305.
  • Tanaka, K., A. Watakabe, and J. Shimura 1994. Polypurine sequences within a downstream exon function as a splicing enhancer. Mol. Cell. Biol. 14:1347–1354.
  • Tian, M., and J. Maniatis 1992. Positive control of pre-mRNA splicing in vitro. Science 256:237–240.
  • Tian, M., and J. Maniatis 1993. A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell 74:105–114.
  • Tian, M., and J. Maniatis 1994. A splicing enhancer exhibits both constitutive and regulated activities. Genes Dev. 8:1703–1712.
  • Wang, J., and J. Manley 1997. Regulation of pre-mRNA splicing in metazoa. Curr. Opin. Genet. Dev. 7:205–211.
  • Wang, Z., H. M. Hoffmann, and J. Grabowski 1995. Intrinsic U2AF binding is modulated by exon enhancer signals in parallel with changes in splicing activity. RNA 1:21–35.
  • Watakabe, A., K. Tanaka, and J. Shimura 1993. The role of exon sequences in splice site selection. Genes Dev. 7:407–418.
  • Wu, J. Y., and J. Maniatis 1993. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75:1061–1070.
  • Xiao, S. H., and J. Manley 1997. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 11:334–344.
  • Zahler, A. M., W. S. Lane, J. A. Stolk, and J. Roth 1992. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 6:837–847.
  • Zhang, M. Q. Personal communication.
  • Zhang, M. Q. 1998. Statistical features of human exons and their flanking regions. Hum. Mol. Genet. 7:919–932.
  • Zuo, P., and J. Maniatis 1996. The splicing factor U2AF35 mediates critical protein-protein interactions in constitutive and enhancer-dependent splicing. Genes Dev. 10:1356–1368.
  • Zuo, P., and J. Manley 1993. Functional domains of the human splicing factor ASF/SF2. EMBO J. 12:4727–4737.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.