45
Views
141
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Repertoire of Fos and Jun Proteins Expressed during the G1 Phase of the Cell Cycle Is Determined by the Duration of Mitogen-Activated Protein Kinase Activation

, &
Pages 330-341 | Received 13 May 1998, Accepted 15 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Abate, C., D. Luk, and J. Curran 1991. Transcriptional regulation by Fos and Jun in vitro: interaction among multiple activator and regulatory domains. Mol. Cell. Biol. 11:3624–3632.
  • Agarwal, S., M. J. Corbley, and J. Roberts 1995. Reconstitution of signal transduction from the membrane to the nucleus in a baculovirus expression system: activation of Raf-1 leads to hypermodification of c-jun and c-fos via multiple pathways. Oncogene 11:427–438.
  • Albanese, C., J. Johnson, G. Watanabe, N. Eklund, D. Vu, A. Arnold, and J. Pestell 1995. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem. 270:23589–23597.
  • Alberts, A. S., O. Geneste, and J. Treisman 1998. Activation of SRF-regulated chromosomal templates by Rho-family GTPases requires a signal that also induces H4 hyperacetylation. Cell 92:475–487.
  • Alessi, D. R., A. Cuenda, P. Cohen, D. T. Dudley, and J. Saltiel 1995. PD098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270:27489–27494.
  • Angel, P., I. Baumann, B. Stein, H. Delius, H. J. Rahmsdorf, and J. Herrlich 1987. 12-O-Tetradecanoyl-phorbol-13-acetate induction of the human collagenase gene is mediated by an inducible enhancer element in the 5′-flanking region. Mol. Cell. Biol. 7:2256–2266.
  • Angel, P., and J. Karin 1991. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta 1072:129–157.
  • Aziz, N., H. Cherwinski, and M. McMahon. Unpublished data.
  • Balmanno, K., and S. J. Cook. Unpublished data.
  • Bergers, G., P. Graninger, S. Braselmann, C. Wrighton, and J. Busslinger 1995. Transcriptional activation of the fra-1 gene by AP-1 is mediated by regulatory sequences in the first intron. Mol. Cell. Biol. 15:3748–3758.
  • Brusselbach, S., U. Mohle-Steinlein, Z. Q. Wang, M. Schreiber, F. C. Lucibello, R. Muller, and J. Wagner 1995. Cell proliferation and cell cycle progression are not impaired in fibroblasts and ES cells lacking c-Fos. Oncogene 10:79–86.
  • Cadwallader, K., J. Beltman, F. McCormick, and J. Cook 1997. Differential regulation of extracellular signal-regulated protein kinase 1 and Jun N-terminal kinase 1 by Ca2+ and protein kinase C in endothelin-stimulated Rat-1 cells. Biochem. J. 321:795–804.
  • Chen, R.-H., C. Sarnecki, and J. Blenis 1992. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell. Biol. 12:915–927.
  • Chen, R.-H., P. C.-H. Juo, T. Curran, and J. Blenis 1996. Phosphorylation of c-Fos at the C-terminus enhances its transforming activity. Oncogene 12:1493–1502.
  • Cobb, M. H., J. E. Hepler, M. Cheng, and J. Robbins 1994. The mitogen-activated protein kinases, ERK1 and ERK2. Semin. Cancer Biol. 5:261–268.
  • Coffer, P., M. de Jonge, A. Mettouchi, B. Binetruy, J. Ghysdael, and J. Kruijer 1994. junB promoter regulation: Ras mediated transactivation by c-Ets-1 and c-Ets-2. Oncogene 9:911–921.
  • Cohen, D. R., and J. Curran 1988. fra-1: a serum-inducible, cellular immediate-early gene that encodes a Fos-related antigen. Mol. Cell. Biol. 8:2063–2069.
  • Cohen, D. R., P. C. Ferreira, R. Gentz, B. R. Franza Jr., and J. Curran 1989. The product of a fos-related gene, fra-1, binds cooperatively to the AP-1 site with Jun: transcription factor AP-1 is comprised of multiple protein complexes. Genes Dev. 3:173–184.
  • Cook, S. J., B. Rubinfeld, I. Albert, and J. McCormick 1993. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 12:3475–3485.
  • Cook, S. J., and J. McCormick 1996. Kinetic and biochemical correlation between sustained p44ERK1 (44 kDa extracellular signal-regulated kinase 1) activation and lysophosphatidic acid-stimulated DNA synthesis in Rat-1 cells. Biochem. J. 320:237–245.
  • Cook, S. J., J. Beltman, K. A. Cadwallader, M. McMahon, and J. McCormick 1997. Regulation of mitogen-activated protein kinase phosphatase-1 expression by extracellular signal-related kinase-dependent and Ca2+-dependent signal pathways in Rat-1 cells. J. Biol. Chem. 272:13309–13319.
  • Cook, S. J. Unpublished data.
  • Cowley, S., H. Paterson, P. Kemp, and J. Marshall 1994. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852.
  • Crews, C. M., A. Alessandrini, and J. Erickson 1992. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258:478–480.
  • Curran, T., A. D. Miller, L. Zokas, and J. Verma 1984. Viral and cellular fos proteins: a comparative analysis. Cell 36:259–268.
  • Curran, T., and J. Morgan 1987. Memories of fos. Bioessays 7:255–258.
  • De Cesare, D., D. Vallone, A. Caracciolo, P. Sassone-Corsi, C. Nerlov, and J. Verde 1995. Heterodimerization of c-Jun with ATF-2 and c-Fos is required for positive and negative regulation of the human urokinase enhancer. Oncogene 11:365–376.
  • Dent, P., W. Haser, T. A. J. Haystead, L. A. Vincent, T. M. Roberts, and J. Sturgill 1992. Activation of mitogen-activated protein kinase by v-Raf in NIH3T3 cells and in vitro. Science 257:1404–1407.
  • Derijard, B., M. Hibi, I. H. Wu, T. Barrett, B. Su, T. Deng, M. Karin, and J. Davis 1994. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025–1037.
  • Devary, Y., R. A. Gottlieb, L. F. Lau, and J. Karin 1991. Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol. Cell. Biol. 11:2804–2811.
  • Galang, C. K., C. J. Der, and J. Hauser 1994. Oncogenic Ras can induce transcriptional activation through a variety of promoter elements including tandem c-Ets-2 binding sites. Oncogene 9:2913–2921.
  • Gentz, R., F. Rausher, C. Abate, and J. Curran 1989. Parallel association of Fos and Jun leucine zippers juxtaposes DNA binding domains. Science 243:1695–1699.
  • Ghosh, A., and J. Greenberg 1995. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268:239–247.
  • Gille, H., M. Kortenjann, O. Thomae, C. Moomaw, C. Slaughter, M. H. Cobb, and J. Shaw 1995. ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 14:951–962.
  • Greenberg, M. E., and J. Ziff 1984. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311:433–438.
  • Gruda, M. C., K. Kovary, R. Metz, and J. Bravo 1994. Regulation of Fra-1 and Fra-2 phosphorylation differs during the cell cycle of fibroblasts and phosphorylation in vitro by MAP kinase affects DNA binding activity. Oncogene 9:2537–2547.
  • Hai, T., and J. Curran 1991. Cross family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc. Natl. Acad. Sci. USA 88:3720–3724.
  • Halazonetis, T. D., K. Georgeopoulos, M. E. Greenberg, and J. Leder 1988. c-Jun dimerizes with itself and with c-Fos forming complexes with different binding affinities. Cell 55:917–924.
  • Hawker, K. L., J. K. Vass, and J. Ozanne 1996. Isolation of novel, transcriptionally active AP-1 binding sites: implications for cellular transformation. Oncogene 13:283–292.
  • Heasley, L. E., and J. Johnson 1992. The beta-PDGF receptor induces neuronal differentiation of PC12 cells. Mol. Biol. Cell 3:545–553.
  • Herber, B., M. Truss, M. Beato, and J. Müller 1994. Inducible regulatory elements in the human cyclin D1 promoter. Oncogene 9:1295–1304.
  • Hill, C. S., and J. Treisman 1995. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 80:199–211.
  • Hipskind, R. A., M. Baccarini, and J. Nordheim 1994. Transient activation of RAF-1, MEK, and ERK2 coincides kinetically with ternary complex factor phosphorylation and immediate-early gene promoter activity in vivo. Mol. Cell. Biol. 14:6219–6231.
  • Howe, L. R., S. J. Leevers, N. Gómez, S. Nakielny, P. Cohen, and J. Marshall 1992. Activation of the MAP kinase pathway by the protein kinase raf. Cell 71:335–342.
  • Hu, E., E. Mueller, S. Oliviero, V. E. Papaioannou, R. Johnson, and J. Spiegelman 1994. Targeted disruption of the c-fos gene demonstrates c-fos-dependent and -independent pathways for gene expression stimulated by growth factors or oncogenes. EMBO J. 13:3094–3103.
  • Johnson, C. M., C. S. Hill, S. Chawla, R. Treisman, and J. Bading 1997. Calcium controls gene expression via three distinct pathways that can function independently of the Ras/mitogen-activated protein kinases (ERKs) signaling cascade. J. Neurosci. 17:6189–6202.
  • Johnson, G. L., and J. Vaillancourt 1994. Sequential protein kinase reactions controlling cell growth and differentiation. Curr. Opin. Cell Biol. 6:230–238.
  • Johnson, R., B. Spiegelman, D. Hanahan, and J. Wisdom 1996. Cellular transformation and malignancy induced by Ras require c-Jun. Mol. Cell. Biol. 16:4504–4511.
  • Kahan, C., K. Seuwen, S. Meloch, and J. Pouyssegur 1992. Coordinate, biphasic activation of p44 mitogen-activated protein kinase and S6 kinase by growth factors in hamster fibroblasts. Evidence for thrombin-induced signals different from phosphoinositide turnover and adenylylcyclase inhibition. J. Biol. Chem. 267:13369–13375.
  • Karin, M., and J. Hunter 1995. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr. Biol. 5:747–757.
  • Kouzarides, T., and J. Ziff 1989. Leucine zippers of fos, jun and GCN4 dictate dimerization specificity and thereby control DNA binding. Nature 340:568–571.
  • Kovary, K., and J. Bravo 1992. Existence of different Fos/Jun complexes during the G0-to-G1 transition and during exponential growth in mouse fibroblasts: differential role of Fos proteins. Mol. Cell. Biol. 12:5015–5023.
  • Kovary, K., and J. Bravo 1991. Expression of different Jun and Fos proteins during the G0-to-G1 transition in mouse fibroblasts: in vitro and in vivo associations. Mol. Cell. Biol. 11:2451–2459.
  • Kruijer, W., J. A. Cooper, T. Hunter, and J. Verma 1984. Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature 312:711–716.
  • Kyriakis, J. M., H. App, X. F. Zhang, P. Banerjee, D. L. Brautigan, U. R. Rapp, and J. Avruch 1992. Raf-1 activates MAP kinase-kinase. Nature 358:417–421.
  • Kyriakis, J. M., P. Banerjee, E. Nikolakaki, T. Dai, E. A. Rubie, M. F. Ahmad, J. Avruch, and J. Woodgett 1994. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–160.
  • Lallemand, D., G. Spyrou, M. Yaniv, and J. Pfarr 1997. Variations in Jun and Fos protein expression and AP-1 activity in cycling, resting and stimulated fibroblasts. Oncogene 14:819–830.
  • Landschulz, W. H., P. F. Johnson, and J. McKnight 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764.
  • Lavoie, J. N., G. L’Allemain, A. Brunet, R. Muller, and J. Pouyssegur 1996. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 271:20608–20616.
  • Lee, W. M., C. Lin, and J. Curran 1988. Activation of the transforming potential of the human fos proto-oncogene requires message stabilization and results in increased amounts of partially modified Fos protein. Mol. Cell. Biol. 8:5521–5527.
  • Leevers, S. J., H. F. Paterson, and J. Marshall 1994. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369:411–414.
  • Lenormand, P., C. Sardet, G. Pagés, G. L’Allemain, A. Brunet, and J. Pouysségur 1993. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J. Cell Biol. 122:1079–1088.
  • Lloyd, A., N. Yancheva, and J. Wasylyk 1991. Transformation suppressor activity of a Jun transcription factor lacking its activation domain. Nature 352:635–638.
  • Marais, R., J. Wynne, and J. Treisman 1993. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73:381–393.
  • Marais, R., Y. Light, H. Paterson, and J. Marshall 1995. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J. 14:101–110.
  • Marshall, C. J. 1995. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185.
  • Marshall, C. J. 1996. Ras effectors. Curr. Opin. Cell Biol. 8:197–204.
  • May, G. H., M. Funk, E. J. Black, W. Clark, S. Hussain, J. R. Woodgett, and J. Gillespie 1998. An oncogenic mutation uncouples the v-Jun oncoprotein from positive regulation by the SAPK/JNK pathway in vivo. Curr. Biol. 8:117–120.
  • McCarthy, S. A., M. L. Samuels, C. A. Pritchard, J. A. Abraham, and J. McMahon 1995. Rapid induction of heparin-binding epidermal growth factor/diphtheria toxin receptor expression by Raf and Ras oncogenes. Genes Dev. 9:1953–1964.
  • McCarthy, S. A., D. Chen, B. S. Yang, R. J. Garcia, H. Cherwinski, X. R. Chen, M. Klagsburg, C. A. Hauser, M. C. Ostrowski, and J. McMahon 1997. Rapid phosphorylation of Ets-2 accompanies mitogen-activated protein kinase activation and the induction of heparin-binding epidermal growth factor gene expression by oncogenic Raf-1. Mol. Cell. Biol. 17:2401–2412.
  • Mechta, F., D. Lallemand, C. M. Pfarr, and J. Yaniv 1997. Transformation by ras modifies AP1 composition and activity. Oncogene 14:837–847.
  • Miao, G. G., and J. Curran 1994. Cell transformation by c-Fos requires an extended period of expression and is independent of the cell cycle. Mol. Cell. Biol. 14:4295–4310.
  • Minden, A., A. Lin, M. McMahon, C. Lange-Carter, B. Derijard, R. J. Davis, G. L. Johnson, and J. Karin 1994. Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 266:1719–1723.
  • Morgan, J. I., and J. Curran 1989. Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci. 12:459–462.
  • Muller, R., R. Bravo, J. Burckhardt, and J. Curran 1984. Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature 312:716–720.
  • Murakami, M., M. H. Sonobe, M. Ui, Y. Kabuyama, H. Watanabe, T. Wada, H. Handa, and J. Iba 1997. Phosphorylation and high level expression of Fra-2 in v-src transformed cells: a pathway of activation of endogenous AP-1. Oncogene 14:2435–2444.
  • Musti, A. M., M. Treier, and J. Bohmann 1997. Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 275:400–402.
  • Papavassiliou, A. G., M. Treier, and J. Bohmann 1995. Intramolecular signal transduction in c-Jun. EMBO J. 14:2014–2019.
  • Rauscher, F. J. III, P. J. Voulalas, B. R. Franza Jr., and J. Curran 1988. Fos and Jun bind cooperatively to the AP-1 site: reconstitution in vitro. Genes Dev. 2:1687–1699.
  • Robertson, L. M., T. K. Kerppola, M. Vendrell, D. Luk, R. J. Smeyne, C. Bocchiaro, J. I. Morgan, and J. Curran 1995. Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron 14:241–252.
  • Ryseck, R. P., and J. Bravo 1991. c-Jun, JunB and JunD differ in their binding affinities to AP-1 and CRE consensus sequences; effect of Fos proteins. Oncogene 6:533–542.
  • Saez, E., S. E. Rutberg, E. Mueller, H. Oppenheim, J. Smoluk, S. H. Yuspa, and J. Spiegelman 1995. c-fos is required for malignant progression of skin tumors. Cell 82:721–732.
  • Samuels, M. L., M. J. Weber, M. Bishop, and J. McMahon 1993. Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human Raf-1 protein kinase. Mol. Cell. Biol. 13:6241–6252.
  • Sewing, A., B. Wiseman, A. C. Lloyd, and J. Land 1997. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol. Cell. Biol. 17:5588–5597.
  • Sonnenberg, J. L., P. F. Macgregor-Leon, T. Curran, and J. Morgan 1989. Dynamic alterations in the levels and composition of transcription factor AP-1 complexes after seizure. Neuron 3:359–365.
  • Sonobe, M. H., T. Yoshida, M. Murakami, T. Kameda, and J. Iba 1995. fra-2 promoter can respond to serum-stimulation through AP-1 complexes. Oncogene 10:689–696.
  • Stacey, D. W., T. Watson, H. F. Kung, and J. Curran 1987. Microinjection of transforming Ras proteins induces c-fos expression. Mol. Cell. Biol. 7:523–527.
  • Stokoe, D., S. G. Macdonald, K. Cadwallader, M. Symons, and J. Hancock 1994. Activation of Raf as a result of recruitment to the plasma membrane. Science 264:1463–1467.
  • Suzuki, T., M. Murakami, N. Onai, E. Fukuda, Y. Hashimoto, M. H. Sonobe, T. Kameda, M. Ichinose, K. Miki, and J. Iba 1994. Analysis of AP-1 function in cellular transformation pathways. J. Virol. 68:3527–3535.
  • Traverse, S., P. Cohen, H. Paterson, C. Marshall, U. Rapp, and J. Grand 1993. Specific association of activated MAP kinase kinase kinase (Raf) with the plasma membranes of ras-transformed retinal cells. Oncogene 8:3175–3181.
  • Traverse, S., K. Seedorf, H. Paterson, C. J. Marshall, P. Cohen, and J. Ullrich 1994. EGF triggers neuronal differentiation of PC12 cells that overexpress the EGF receptor. Curr. Biol. 4:694–701.
  • Treinies, I., H. F. Paterson, S. Hooper, R. Wilson, and J. Marshall 1999. Activated MEK stimulates expression of AP-1 components independently of phosphatidylinositol 3-kinase (PI3-kinase) but requires a PI3-kinase signal to stimulate DNA synthesis. Mol. Cell. Biol. 19:321–329.
  • Treisman, R. 1985. Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5′ element and c-fos 3′ sequences. Cell 42:889–902.
  • Treisman, R. 1994. Ternary complex factors: growth factor regulated transcriptional activators. Curr. Opin. Genet. Dev. 4:96–101.
  • Treisman, R. 1996. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8:205–215.
  • Vallone, D., S. Battista, G. M. Pierantoni, M. Fedele, L. Casalino, M. Santoro, G. Viglietto, A. Fusco, and J. Verde 1997. Neoplastic transformation of rat thyroid cells requires the junB and fra-1 gene induction which is dependent on the HMGI-C gene product. EMBO J. 16:5310–5321.
  • van Aelst, L., M. Barr, S. Marcus, A. Polverino, and J. Wigler 1993. Complex formation between RAS and RAF and other protein kinases. Proc. Natl. Acad. Sci. USA 90:6213–6217.
  • Van Dam, H., D. Wilhelm, I. Herr, A. Steffen, P. Herrlich, and J. Angel 1995. ATF-2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBO J. 14:1798–1811.
  • Vouret-Craviari, V., E. Van Obberghen-Schilling, J. C. Scimeca, E. Van Obberghen, and J. Pouysségur 1993. Differential activation of p44mapk (ERK1) by α-thrombin and thrombin-receptor peptide agonist. Biochem. J. 289:209–214.
  • Warne, P. H., P. R. Viciana, and J. Downward 1993. Direct interaction of Ras and the amino terminal region of Raf-1 in vitro. Nature 364:352–355.
  • Whitmarsh, A. J., and J. Davis 1996. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J. Mol. Med. 74:589–607.
  • Wolthuis, R. M., N. D. de Ruiter, R. H. Cool, and J. Bos 1997. Stimulation of gene induction and cell growth by the Ras effector Rlf. EMBO J. 16:6748–6761.
  • Woods, D., D. Parry, H. Cherwinski, E. Bosch, E. Lees, and J. McMahon 1997. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol. Cell. Biol. 17:5598–5611.
  • Yang, B. S., C. A. Hauser, G. Henkel, M. S. Colman, C. Van Beveren, K. J. Stacey, D. A. Hume, R. A. Maki, and J. Ostrowski 1996. Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Mol. Cell. Biol. 16:538–547.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.