12
Views
52
CrossRef citations to date
0
Altmetric
Gene Expression

Ribosomal Protein L3 Mutants Alter Translational Fidelity and Promote Rapid Loss of the Yeast Killer Virus

, , , , &
Pages 384-391 | Received 23 Jul 1998, Accepted 28 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Alani, E., L. Cao, and J. Kleckner 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545.
  • Anderson, J. S. J., and J. Parker 1998. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17:1497–1506.
  • Balasundaram, D., J. D. Dinman, R. B. Wickner, C. W. Tabor, and J. Tabor 1994. Spermidine deficiency increases +1 ribosomal frameshifting efficiency and inhibits Ty 1 retrotransposition in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 91:172–176.
  • Benard, L., K. Carroll, R. C. P. Valle, and J. Wickner 1998. Ski6p is a homolog of RNA-processing enzymes that affects translation of non-poly(A) mRNAs and 60S ribosomal subunit biogenesis. Mol. Cell. Biol. 18:2688–2696.
  • Bishop, J. M. 1978. Retroviruses. Annu. Rev. Biochem. 47:35–88.
  • Brierley, I. 1995. Ribosomal frameshifting on viral RNAs. J. Gen. Virol. 76:1885–1892.
  • Brierley, I. A., P. Dingard, and J. Inglis 1989. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57:537–547.
  • Brierley, I. A., A. J. Jenner, and J. Inglis 1992. Mutational analysis of the “slippery sequence” component of a coronavirus ribosomal frameshifting signal. J. Mol. Biol. 227:463–479.
  • Bruenn, J., and J. Keitz 1976. The 5′ ends of yeast killer factor RNAs are pppGp. Nucleic Acids Res. 3:2427–2436.
  • Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and J. Hieter 1992. Multifunctional yeast high-copy-number shuttle vectors. Yeast 110:119–122.
  • Cui, Y., J. D. Dinman, T. G. Kinzy, and J. Peltz 1998. The Mof2/Sui1 protein is a general monitor of translational accuracy. Mol. Cell. Biol. 18:1506–1516.
  • Cui, Y., J. D. Dinman, and J. Peltz 1996. mof4-1 is an allele of the UPF1/IFS2 gene which affects both mRNA turnover and −1 ribosomal frameshifting efficiency. EMBO J. 15:5726–5736.
  • Cui, Y., K. W. Hagan, S. Zhang, and J. Peltz 1995. Identification and characterization of genes that are required for the accelerated degradation of mRNAs containing a premature translational termination codon. Genes Dev. 9:423–436.
  • Cui, Y., T. G. Kinzy, J. D. Dinman, and S. W. Peltz. Unpublished data.
  • Czaplinski, K., M. J. Ruiz-Echevarria, S. V. Paushkin, Y. Weng, H. A. Perlick, H. C. Dietz, M. D. Ter-Avanesyan, and J. Peltz 1998. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12:1665–1667.
  • Dinman, J. D. 1995. Ribosomal frameshifting in yeast viruses. Yeast 11:1115–1127.
  • Dinman, J. D., T. Icho, and J. Wickner 1991. A −1 ribosomal frameshift in a double-stranded RNA virus forms a Gag-pol fusion protein. Proc. Natl. Acad. Sci. USA 88:174–178.
  • Dinman, J. D., and J. Kinzy 1997. Translational misreading: mutations in translation elongation factor 1α differentially affect programmed ribosomal frameshifting and drug sensitivity. RNA 3:870–881.
  • Dinman, J. D., M. J. Ruiz-Echevarria, K. Czaplinski, and J. Peltz 1997. Peptidyl transferase inhibitors have antiviral properties by altering programmed −1 ribosomal frameshifting efficiencies: development of model systems. Proc. Natl. Acad. Sci. USA 94:6606–6611.
  • Dinman, J. D., M. J. Ruiz-Echevarria, and J. Peltz 1998. Translating old drugs into new treatments: identifying compounds that modulate programmed −1 ribosomal frameshifting and function as potential antiviral agents. Trends Biotechnol. 16:190–196.
  • Dinman, J. D., and J. Wickner 1992. Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J. Virol. 66:3669–3676.
  • Dinman, J. D., and J. Wickner 1994. Translational maintenance of frame: mutants of Saccharomyces cerevisiae with altered −1 ribosomal frameshifting efficiencies. Genetics 136:75–86.
  • Dinman, J. D., and J. Wickner 1995. 5S rRNA is involved in fidelity of translational reading frame. Genetics 141:95–105.
  • Farabaugh, P. J. 1996. Programmed translational frameshifting. Microbiol. Rev. 60:103–134.
  • Fried, H. M., and J. Fink 1978. Electron microscopic heteroduplex analysis of “killer” double-stranded RNA species from yeast. Proc. Natl. Acad. Sci. USA 75:4224–4228.
  • Fried, H. M., and J. Warner 1981. Cloning of yeast gene for trichodermin resistance and ribosomal protein L3. Proc. Natl. Acad. Sci. USA 78:238–242.
  • Gesteland, R. F., and J. Atkins 1996. Recoding: dynamic reprogramming of translation. Annu. Rev. Biochem. 65:741–768.
  • Grant, P. G., D. Schindler, and J. Davies 1976. Mapping of trichodermin resistance in Saccharomyces cerevisiae: a genetic locus for a component of the 60S ribosomal subunit. Genetics 83:667–673.
  • Hsu, C. L., and J. Stevens 1993. Yeast cells lacking 5′→3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell. Biol. 13:4826–4835.
  • Jacks, T. 1996. Translational suppression in gene expression in retroviruses and retrotransposons. Curr. Top. Microbiol. Immunol. 157:93–124.
  • Jacks, T., H. D. Madhani, F. R. Masiraz, and J. Varmus 1988. Signals for ribosomal frameshifting in the Rous Sarcoma Virus gag-pol region. Cell 55:447–458.
  • Jimenez, A., L. Sanchez, and J. Vazquez 1975. Simultaneous ribosomal resistance to trichodermin and anisomycin in Saccharomyces cerevisiae mutants. Biochim. Biophys. Acta 383:427–434.
  • Johnson, A. W., and J. Kolodner 1995. Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control. Mol. Cell. Biol. 15:2719–2727.
  • Lee, S. I., J. G. Umen, and J. Varmus 1995. A genetic screen identifies cellular factors involved in retroviral −1 frameshifting. Proc. Natl. Acad. Sci. USA 92:6587–6591.
  • Masison, D. C., A. Blanc, J. C. Ribas, K. Carroll, N. Sonenberg, and J. Wickner 1995. Decoying the Cap− mRNA degradation system by a double-stranded RNA virus and poly(A)− mRNA surveillance by a yeast antiviral system. Mol. Cell. Biol. 15:2763–2771.
  • Morikawa, S., and J. Bishop 1992. Identification and analysis of the gag-pol ribosomal frameshift site of feline immunodeficiency virus. Virology 186:389–397.
  • Muhlrad, D., and J. Parker 1992. Mutations affecting stability and deadenylation of the yeast MFA2 transcript. Genes Dev. 6:2100–2111.
  • Noller, H. F. 1993. Peptidyl transferase: protein, ribonucleoprotein, or RNA? J. Bacteriol. 175:5297–5300.
  • Noller, H. F. 1997. Ribosomes and translation. Annu. Rev. Biochem. 66:679–716.
  • Ohtake, Y., and J. Wickner 1995. Yeast virus propagation depends critically on free 60S ribosomal subunit concentration. Mol. Cell. Biol. 15:2772–2781.
  • Peltz, S. W., C. Trotta, F. He, A. Brown, J. Donahue, E. Welch, A. Jacobson 1993. Identification of the cis-acting sequences and trans-acting factors involved in nonsense-mediated mRNA decay, p. 1–10. In M. Tuite, J. McCarthy, A. Brown, F. Sherman (ed.), Protein synthesis and targeting in yeast. Springer-Verlag, Berlin, Germany.
  • Ridley, S. P., S. S. Sommer, and J. Wickner 1984. Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN. Mol. Cell. Biol. 4:761–770.
  • Ruiz-Echevarria, M. J., C. I. Gonzalez, and J. Peltz 1998. Identifying the right stop: determining how the surveillance complex recognizes and degrades an aberrant mRNA. EMBO J. 17:575–589.
  • Ruiz-Echevarria, M. J., J. M. Yasenchak, X. Han, J. D. Dinman, and J. Peltz 1998. The Upf3p is a component of the surveillance complex that monitors both translation and mRNA turnover and affects viral maintenance. Proc. Natl. Acad. Sci. USA 95:8721–8726.
  • Schindler, D., P. Grant, and J. Davies 1974. Trichodermin resistance—mutation affecting eukaryotic ribosomes. Nature 248:535–536.
  • Schultz, L. D., and J. Friesen 1983. Nucleotide sequence of the tcm1 gene (ribosomal protein L3) of Saccharomyces cerevisiae. J. Bacteriol. 155:8–14.
  • Sikorski, R. S., and J. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Somogyi, P., A. J. Jenner, I. Brierley, and J. Inglis 1993. Ribosomal pausing during translation of an RNA pseudoknot. Mol. Cell. Biol. 13:6931–6940.
  • Stevens, A. 1980. Purification and characterization of a Saccharomyces cerevisiae exoribonuclease which yields 5′-mononucleotides by a 5′ leads to 3′ mode of hydrolysis. J. Biol. Chem. 255:3080–3085.
  • Stevens, A., and J. Maupin 1987. A 5′—3′ exoribonuclease of Saccharomyces cerevisiae: size and novel substrate specificity. Arch. Biochem. Biophys. 252:339–347.
  • TenDam, E., K. Pleij, and J. Bosch 1990. RNA pseudoknots: translational frameshifting and readthrough on viral RNAs. Virus Genes 4:121–136.
  • Thiele, D. J., E. M. Hannig, and J. Leibowitz 1984. Genome structure and expression of a defective interfering mutant of the killer virus of yeast. Virology 137:20–31.
  • Tu, C., T.-H. Tzeng, and J. Bruenn 1992. Ribosomal movement impeded at a pseudoknot required for ribosomal frameshifting. Proc. Natl. Acad. Sci. USA 89:8636–8640.
  • Tumer, N. E., B. A. Parikh, P. Li, and J. Dinman 1998. Pokeweed antiviral protein specifically inhibits Ty 1-directed +1 ribosomal frameshifting and Ty 1 retrotransposition in Saccharomyces cerevisiae. J. Virol. 72:1036–1042.
  • Weng, Y., K. Czaplinski, and J. Peltz 1996. Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover. Mol. Cell. Biol. 16:5491–5506.
  • Weng, Y., K. Czaplinski, and J. Peltz 1996. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol. Cell. Biochem. 16:5477–5490.
  • Weng, Y., K. Czaplinski, and J. Peltz 1998. ATP is a cofactor of the Upf1 protein that modulates its translation termination and RNA binding activities. RNA 4:205–214.
  • Wickner, R. B. 1996. Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiol. Rev. 60:250–265.
  • Wickner, R. B., and J. Leibowitz 1974. Chromosomal and non-chromosomal mutations affecting the “killer character” of Saccharomyces cerevisiae. Genetics 76:423–432.
  • Wickner, R. B., S. Porter-Ridley, H. M. Fried, and J. Ball 1982. Ribosomal protein L3 is involved in replication or maintenance of the killer double-stranded RNA genome of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 79:4706–4708.
  • Zhang, B., and J. Cech 1997. Peptide bond formation by in vitro selected ribozymes. Nature 390:96–100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.