4
Views
21
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Testing for DNA Tracking by MOT1, a SNF2/SWI2 Protein Family Member

&
Pages 412-423 | Received 10 Jul 1998, Accepted 13 Oct 1998, Published online: 28 Mar 2023

REFERENCES

  • Auble, D. T. Unpublished observations.
  • Auble, D. T., and J. Hahn 1993. An ATP-dependent inhibitor of TBP binding to DNA. Genes Dev. 7:844–856.
  • Auble, D. T., K. E. Hansen, C. G. F. Mueller, W. S. Lane, J. Thorner, and J. Hahn 1994. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev. 8:1920–1934.
  • Auble, D. T., D. Wang, K. W. Post, and J. Hahn 1997. Molecular analysis of the SNF2/SWI2 protein family member MOT1, an ATP-driven enzyme that dissociates TATA-binding protein from DNA. Mol. Cell. Biol. 17:4842–4851.
  • Brown, S. A., and J. Kingston 1997. Disruption of downstream chromatin by a transcriptional activator. Genes Dev. 11:3116–3121.
  • Cairns, B. R., Y. Lorch, Y. Li, M. Zhang, L. Lacomis, H. Erdjument-Bromage, P. Tempst, J. Du, B. Laurent, and J. Kornberg 1996. RSC, an essential, abundant chromatin-remodeling complex. Cell 87:1249–1260.
  • Chicca, J. J. I., D. T. Auble, and J. Pugh 1998. Cloning and biochemical characterization of TAF-172, a human homolog of yeast MOT1. Mol. Cell. Biol. 18:1701–1710.
  • Cote, J., J. Quinn, J. L. Workman, and J. Peterson 1994. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265:53–60.
  • Cox, J. M., M. M. Hayward, J. F. Sanchez, L. D. Gegnas, S. van der Zee, J. H. Dennis, P. B. Sigler, and J. Schepartz 1997. Bidirectional binding of the TATA box binding protein to the TATA box. Proc. Natl. Acad. Sci. USA 94:13475–13480.
  • Deuschle, U., R. A. Hipskind, and J. Bujard 1990. RNA polymerase II transcription blocked by Escherichia coli lac repressor. Science 248:480–483.
  • Eisen, J. A., K. S. Sweder, and J. Hanawalt 1995. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23:2715–2723.
  • Elfring, L. K., R. Deuring, C. M. McCallum, C. L. Peterson, and J. Tamkun 1994. Identification and characterization of Drosophila relatives of yeast transcriptional activator SNF2/SWI2. Mol. Cell. Biol. 14:2225–2234.
  • Fu, T.-J., G. M. Sanders, M. O’Donnell, and J. Geiduschek 1996. Dynamics of DNA-tracking by two sliding-clamp proteins. EMBO J. 15:4414–4422.
  • Gelles, J., and J. Landick 1998. RNA polymerase as a molecular motor. Cell 93:13–16.
  • Gorbalenya, E. G., E. V. Koonin, A. P. Donchenko, and J. Blinov 1989. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 17:4713–4730.
  • Guzder, S. N., P. Sung, L. Prakash, and J. Prakash 1997. Yeast Rad7-Rad16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor. J. Biol. Chem. 272:21665–21668.
  • Henikoff, S. 1993. Transcriptional activator components and poxvirus DNA-dependent ATPases comprise a single family. Trends Biochem. Sci. 18:291–292.
  • Hoopes, B. C., J. F. LeBlanc, and J. Hawley 1992. Kinetic analysis of yeast TFIID-TATA box complex formation suggests a multi-step pathway. J. Biol. Chem. 267:11539–11547.
  • Imbalzano, A. N., H. Kwon, M. R. Green, and J. Kingston 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370:481–485.
  • Ito, T., M. Bulger, M. J. Pazin, R. Kobayashi, and J. Kadonaga 1997. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90:145–155.
  • Kadonaga, J. T. 1998. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92:307–313.
  • Khavari, P. A., C. L. Peterson, J. W. Tamkun, D. B. Mendel, and J. Crabtree 1993. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366:170–174.
  • Kim, Y., J. H. Geiger, S. Hahn, and J. Sigler 1993. Crystal structure of a yeast TBP/TATA-box complex. Nature 365:512–520.
  • King, K., S. J. Benkovic, and J. Modrich 1989. Glu-111 is required for activation of the DNA cleavage center of EcoRI endonuclease. J. Biol. Chem. 264:11807–11815.
  • Kwon, H., A. N. Imbalzano, P. A. Khavari, R. E. Kingston, and J. Green 1994. Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature 370:477–481.
  • Laurent, B. C., I. Treich, and J. Carlson 1993. The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation. Genes Dev. 7:583–591.
  • Lewis, M., G. Chang, N. C. Horton, M. A. Kercher, H. C. Pace, M. A. Schumacher, R. G. Brennan, and J. Lu 1996. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271:1247–1254.
  • Lohman, T. M., K. Thorn, and J. Vale 1998. Staying on track: common features of DNA helicases and microtubule motors. Cell 93:9–12.
  • Mizuguchi, G., T. Tsukiyama, J. Wisniewski, and J. Wu 1997. Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. Mol. Cell 1:141–150.
  • Owen-Hughes, T., R. T. Utley, C. L. Peterson, and J. Workman 1996. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science 273:513–516.
  • Pazin, M. J., and J. Kadonaga 1997. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell 88:737–740.
  • Petukhova, G., S. Stratton, and J. Sung 1998. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393:91–94.
  • Reddy, P., and J. Hahn 1991. Dominant negative mutations in yeast TFIID define a bipartite DNA-binding region. Cell 65:349–357.
  • Riggs, A. D., S. Bourgeois, and J. Cohn 1970. lac repressor-operator interaction. III. Kinetic studies. J. Mol. Biol. 53:401–417.
  • Riggs, A. D., H. Suzuki, and J. Bourgeois 1970. lac repressor-operator interaction. I. Equilibrium studies. J. Mol. Biol. 48:67–83.
  • Sadler, J. R., H. Sasmor, and J. Betz 1983. A perfectly symmetric lac operator binds the lac repressor very tightly. Proc. Natl. Acad. Sci. USA 80:6785–6789.
  • Simons, A., D. Tils, B. von Wilcken-Bergmann, and J. Muller-Hill 1984. Possible ideal lac operator: Escherichia coli lac operator-like sequences from eukaryotic genomes lack the central G-C pair. Proc. Natl. Acad. Sci. USA 81:1624–1628.
  • Strubin, M., and J. Struhl 1992. Yeast and human TFIID with altered DNA-binding specificity for TATA elements. Cell 68:721–730.
  • Syroid, D. E., and J. Capone 1994. RNA chain elongation and termination by mammalian RNA polymerase III. Analysis of tRNA gene transcription by imposing a reversible factor-mediated block to elongation using a sequence-specific DNA binding protein. J. Mol. Biol. 244:482–493.
  • Tantin, D., A. Kansal, and J. Carey 1997. Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol. Cell. Biol. 17:6803–6814.
  • Tinker, R. L., G. A. Kassavetis, and J. Geiduschek 1994. Detecting the ability of viral, bacterial and eukaryotic replication proteins to track along DNA. EMBO J. 13:5330–5337.
  • Tinker-Kulberg, R. L., T.-J. Fu, E. P. Geiduschek, and J. Kassavetis 1996. A direct interaction between a DNA-tracking protein and a promoter recognition protein: implications for searching DNA sequence. EMBO J. 15:5032–5039.
  • Tsukiyama, T., C. Daniel, J. Tamkun, and J. Wu 1995. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83:1021–1026.
  • Tsukiyama, T., and J. Wu 1997. Chromatin remodeling and transcription. Curr. Opin. Genet. Dev. 7:182–191.
  • Utley, R. T., J. Cote, T. Owen-Hughes, and J. Workman 1997. SWI/SNF stimulates the formation of disparate activator-nucleosome complexes but is partially redundant with cooperative binding. J. Biol. Chem. 272:12642–12649.
  • Varga-Weisz, P. D., M. Wilm, E. Bonte, K. Dumas, M. Mann, and J. Becker 1997. Chromatin-remodeling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388:598–602.
  • Wang, D., and D. T. Auble. Unpublished observations.
  • Winter, R. B., O. G. Berg, and J. von Hippel 1981. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor-operator interaction: kinetic measurements and conclusions. Biochemistry 20:6961–6977.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.