5
Views
11
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

cDNA of the Yeast Retrotransposon Ty5 Preferentially Recombines with Substrates in Silent Chromatin

&
Pages 484-494 | Received 27 Apr 1998, Accepted 19 Oct 1998, Published online: 28 Mar 2023

REFERENCES

  • Atwood, A., J.-H. Lin, and J. Levin 1996. The retrotransposon Tf1 assembles virus-like particles that contain excess Gag relative to integrase because of a regulated degradation process. Mol. Cell. Biol. 16:338–346.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl 1987. Current protocols in molecular biology. Wiley Interscience, New York, N.Y.
  • Biessmann, H., L. E. Champion, M. O’Hair, K. Ikenaga, B. Kasravi, and J. Mason 1992. Frequent transpositions of Drosophila melanogaster HeT-A transposable elements to receding chromosome ends. EMBO J. 11:4459–4469.
  • Biessmann, H., J. M. Mason, K. Ferry, M. d’Hulst, K. Valgeirsdottir, K. L. Traverse, and J. Pardue 1990. Addition of telomere-associated HeT DNA sequences “heals” broken chromosome ends in Drosophila. Cell 61:663–673.
  • Blackburn, E. 1992. Telomerases. Annu. Rev. Biochem. 61:113–129.
  • Boeke, J. D., and J. Sandmeyer 1991. Yeast transposable elements The molecular and cellular biology of the yeast Saccharomyces In J. Broach, E. Jones, J. Pringle (ed.), 1:193–261 Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Boeke, J. D., J. Trueheart, G. Natsoulis, and J. Fink 1987. 5-fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154:164–175.
  • Chen, B., and J. Przybyla 1994. An efficient site-directed mutagenesis method based on PCR. BioTechniques 17:657–659.
  • Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and J. Hieter 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122.
  • Eichinger, D. J., and J. Boeke 1989. A specific terminal structure is required for Ty1 transposition. Genes Dev. 4:324–330.
  • Eickbush, T. H. 1997. Telomerase and retrotransposons: which came first? Science 277:911–912.
  • Fishman-Lobell, J., and J. Haber 1992. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258:480–484.
  • Fishman-Lobell, J., N. Rudin, and J. Haber 1992. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol. Cell. Biol. 12:1292–1303.
  • Gai, X., and J. Voytas 1998. A single amino acid change in the yeast retrotransposon Ty5 abolishes targeting to silent chromatin. Mol. Cell 1:1051–1055.
  • Gai, X., and D. F. Voytas. Unpublished data.
  • Greider, C. W., and J. Blackburn 1989. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337:331–337.
  • Haber, J. E. 1992. Exploring the pathways of homologous recombination. Curr. Opin. Cell. Biol. 4:401–412.
  • Higashiyama, T., Y. Noutoshi, M. Fujia, and J. Yamada 1997. Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. EMBO J. 16:3715–3723.
  • Jinks-Robertson, S., M. Michelitch, and J. Ramcharan 1993. Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:3937–3950.
  • Ke, N., P. A. Irwin, and J. Voytas 1997. The pheromone response pathway activates transcription of Ty5 retrotransposons located within silent chromatin of Saccharomyces cerevisiae. EMBO J. 16:6272–6280.
  • Ke, N., and J. Voytas 1997. High frequency cDNA recombination of the Saccharomyces retrotransposon Ty5: the LTR mediates formation of tandem elements. Genetics 147:545–556.
  • Ke, N., and D. F. Voytas. Unpublished data.
  • Kirchner, J., and J. Sandmeyer 1996. Ty3 integrase mutants defective in reverse transcription or 3′-end processing of extrachromosomal Ty3 DNA. J. Virol. 70:4737–4747.
  • Laurenson, P., and J. Rine 1992. Silencers, silencing, and heritable transcriptional states. Microbiol. Rev. 56:543–560.
  • Lendvay, T. S., D. K. Morris, J. Sah, B. Balasubramanian, and J. Lundblad 1996. Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144:1399–1412.
  • Levis, R. W., R. Ganesan, K. Houtchens, L. A. Tolar, and J. Sheen 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75:1083–1093.
  • Liefshitz, B., A. Parket, R. Maya, and J. Kupiec 1995. The role of DNA repair genes in recombination between repeated sequences in yeast. Genetics 140:1199–1211.
  • Lingner, J., T. R. Hughes, A. Shevchenko, M. Mann, V. Lundblad, and J. Cech 1997. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276:561–567.
  • Louis, E. J., and J. Haber 1990. Mitotic recombination among subtelomeric Y′ repeats in Saccharomyces cerevisiae. Genetics 124:547–559.
  • Louis, E. J., and J. Haber 1992. The structure and evolution of subtelomeric Y′ repeats in Saccharomyces cerevisiae. Genetics 131:559–574.
  • Louis, E. J., and J. Haber 1990. The subtelomeric Y′ repeat family in Saccharomyces cerevisiae: an experimental system for repeated sequence evolution. Genetics 124:533–545.
  • Lundblad, V., and J. Blackburn 1993. An alternative pathway for yeast telomere maintenance rescues est1-senescence. Cell 73:347–360.
  • McEachern, M. J., and J. Blackburn 1996. Cap-prevented recombination between terminal telomeric repeat arrays (telomere CPR) maintains telomeres in Kluyveromyces lactis lacking telomerase. Genes Dev. 10:1822–1834.
  • Melamed, C., Y. Nevo, and J. Kupiec 1992. Involvement of cDNA in homologous recombination between Ty elements in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:1613–1620.
  • Meyerson, M., C. M. Counter, E. N. Eaton, L. W. Ellisen, P. Steiner, S. D. Caddle, L. Ziaugra, R. L. Beijersbergen, M. J. Davidoff, Q. Liu, S. Bacchetti, D. A. Haber, and J. Weinberg 1997. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90:785–795.
  • Nakamura, T. M., G. B. Morin, K. B. Chapman, S. L. Weinrich, W. H. Andrews, J. Lingner, C. B. Harley, and J. Cech 1997. Telomerase catalytic subunit homologs from fission yeast and human. Science 277:955–959.
  • Nevo-Caspi, Y., and J. Kupiec 1996. Induction of Ty recombination in yeast by cDNA and transcription: role of the RAD1 and RAD52 genes. Genetics 144:947–955.
  • Nevo-Caspi, Y., and J. Kupiec 1994. Transcriptional induction of Ty recombination in yeast. Proc. Natl. Acad. Sci. USA 91:12711–12715.
  • Okazaki, S., H. Ishikawa, and J. Fujiwara 1995. Structural analysis of TRAS1, a novel family of telomeric repeat-associated retrotransposons in the silkworm, Bombyx mori. Mol. Cell. Biol. 15:4545–4552.
  • Petes, T. D., R. E. Malone, and J. Symington 1991. Recombination in yeast The molecular and cellular biology of the yeast Saccharomyces In J. Broach, E. Jones, J. Pringle (ed.), 1:407–521 Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Pluta, A. F., and J. Zakian 1989. Recombination occurs during telomere formation in yeast. Nature 337:429–433.
  • Reynolds, P. J., L. Prakash, and J. Prakash 1987. Nucleotide sequence and functional analysis of the RAD1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1012–1020.
  • Roth, C. W., F. Kobeski, M. F. Walter, and J. Biessmann 1997. Chromosome end elongation by recombination in the mosquito Anopheles gambiae. Mol. Cell. Biol. 17:5176–5183.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–210.
  • Rowland, S.-J., and J. Dyke 1990. Tn 552, a novel transposable element from Staphylococcus aureus. Mol. Microbiol. 4:961–975.
  • Schiestl, R. H., and J. Prakash 1988. RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol. Cell. Biol. 8:3619–3626.
  • Sharon, G., T. J. Burkett, and J. Garfinkel 1994. Efficient homologous recombination of Ty1 element cDNA when integration is blocked. Mol. Cell. Biol. 14:6540–6551.
  • Sheen, F.-M., and J. Levis 1994. Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. Proc. Natl. Acad. Sci. USA 91:12510–12514.
  • Singer, M. S., and J. Gottschling 1994. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266:404–409.
  • Skalka, A. M. 1993. Retroviral DNA integration: lessons for transposon shuffling. Gene 135:175–182.
  • Sugawara, N., and J. Haber 1992. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12:563–575.
  • Takahashi, H., S. Okazaki, and J. Fujiwara 1997. A new family of site-specific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm, Bombyx mori. Nucleic Acids Res. 25:1578–1584.
  • Wang, S.-S., and J. Zakian 1990. Telomere-telomere recombination provides an express pathway for telomere acquisition. Nature 345:456–458.
  • Weinstock, K. G., M. F. Mastrangelo, T. J. Burkett, D. J. Garfinkel, and J. Strathern 1990. Multimeric arrays of the yeast retrotransposon Ty. Mol. Cell. Biol. 10:2882–2892.
  • Yu, G. L., J. D. Bradley, L. D. Attardi, and J. Blackburn 1990. In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature 344:126–132.
  • Zou, S., N. Ke, J. M. Kim, and J. Voytas 1996. The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev. 10:634–645.
  • Zou, S., J. M. Kim, and J. Voytas 1996. The Saccharomyces retrotransposon Ty5 influences the organization of chromosome ends. Nucleic Acids Res. 24:4825–4831.
  • Zou, S., and J. Voytas 1997. Silent chromatin determines target preference of the retrotransposon Ty5. Proc. Natl. Acad. Sci. USA 94:7412–7416.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.