9
Views
68
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Fiber-Type-Specific Transcription of the Troponin I Slow Gene Is Regulated by Multiple Elements

, , &
Pages 515-525 | Received 17 Jul 1998, Accepted 28 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Apone, S., and J. Hauschka 1995. Muscle gene E-box control elements. Evidence for quantitatively different transcriptional activities and the binding of distinct regulatory factors. J. Biol. Chem. 270:21420–21427.
  • Ausubel, F. M. 1992. Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology, 2nd ed. Greene Publishing Associates, Brooklyn, N.Y.
  • Banerjee-Basu, S., and J. Buonanno 1993. cis-acting sequences of the rat troponin I slow gene confer tissue- and development-specific transcription in cultured muscle cells as well as fiber type specificity in transgenic mice. Mol. Cell. Biol. 13:7019–7028.
  • Bassel-Duby, R., M. D. Hernandez, Q. Yang, J. M. Rochelle, M. F. Seldin, and J. Williams 1994. Myocyte nuclear factor, a novel winged-helix transcription factor under both developmental and neural regulation in striated myocytes. Mol. Cell. Biol. 14:4596–4605.
  • Braun, T., G. Buschhausen-Denker, E. Bober, E. Tannich, and J. Arnold 1989. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8:701–709.
  • Braun, T., B. Winter, E. Bober, and J. Arnold 1990. Transcriptional activation domain of the muscle-specific gene regulatory protein myf5. Nature 346:663–665.
  • Buckingham, M. 1992. Making muscle in mammals. Trends Genet 8:144–148.
  • Buonanno, A., and J. Rosenthal 1996. Molecular control of muscle diversity and plasticity. Dev. Genet. 19:95–107.
  • Calvo, S., J. Stauffer, M. Nakayama, and J. Buonanno 1996. Transcriptional control of muscle plasticity: differential regulation of troponin I genes by electrical activity. Dev. Genet. 19:169–181.
  • Chin, E. R., E. N. Olson, J. A. Richardson, Q. Yang, C. Humphries, J. M. Shelton, H. Wu, W. Zhu, R. Bassel-Duby, and J. Williams 1998. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12:2499–2509.
  • Clark, M. E., and J. Mellon 1995. The POU homeodomain transcription factor Oct-1 is essential for activity of the gonadotropin-releasing hormone neuron-specific enhancer. Mol. Cell. Biol. 15:6169–6177.
  • Corin, S. J., O. Juhasz, L. Zhu, P. Conley, L. Kedes, and J. Wade 1994. Structure and expression of the human slow twitch skeletal muscle troponin I gene. J. Biol. Chem. 269:10651–10659.
  • Corin, S. J., L. K. Levitt, J. V. O’Mahoney, J. E. Joya, E. C. Hardeman, and J. Wade 1995. Delineation of a slow-twitch-myofiber-specific transcriptional element by using in vivo somatic gene transfer. Proc. Natl. Acad. Sci. USA 92:6185–6189.
  • Dailey, L., H. Yuan, and J. Basilico 1994. Interaction between a novel F9-specific factor and octamer-binding proteins is required for cell-type-restricted activity of the fibroblast growth factor 4 enhancer. Mol. Cell. Biol. 14:7758–7769.
  • Davis, R. L., H. Weintraub, and J. Lassar 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000.
  • Dignam, J. D., P. L. Martin, B. S. Shastry, and J. Roeder 1983. Eukaryotic gene transcription with purified components. Methods Enzymol. 101:582–598.
  • Donoghue, M. J., J. P. Merlie, N. Rosenthal, and J. Sanes 1991. Rostrocaudal gradient of transgene expression in adult skeletal muscle. Proc. Natl. Acad. Sci. USA 88:5847–5851.
  • Edmondson, D. G., T. C. Cheng, P. Cserjesi, T. Chakraborty, and J. Olson 1992. Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. Mol. Cell. Biol. 12:3665–3677.
  • Edmondson, D. G., and J. Olson 1989. A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 3:628–640 (Erratum 4:1450, 1990.)
  • Emerson, C. P. Jr.. 1993. Skeletal myogenesis: genetics and embryology to the fore. Curr. Opin. Genet. Dev. 3:265–274.
  • Finkelstein, R., and J. Perrimon 1990. The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development. Nature 346:485–488 (Comments.)
  • Gerber, A. N., T. R. Klesert, D. A. Bergstrom, and J. Tapscott 1997. Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis. Genes Dev. 11:436–450.
  • Gorman, C. M., L. F. Moffat, and J. Howard 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Gossett, L. A., D. J. Kelvin, E. A. Sternberg, and J. Olson 1989. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol. Cell. Biol. 9:5022–5033.
  • Graham, F. L., and J. Van der Eb 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467.
  • Grayson, J., R. S. Williams, Y. T. Yu, and J. Bassel-Duby 1995. Synergistic interactions between heterologous upstream activation elements and specific TATA sequences in a muscle-specific promoter. Mol. Cell. Biol. 15:1870–1878.
  • Hallauer, P. L., K. E. Hastings, and J. Peterson 1988. Fast skeletal muscle-specific expression of a quail troponin I gene in transgenic mice. Mol. Cell. Biol. 8:5072–5079.
  • Hastings, K. E., R. I. Koppe, E. Marmor, D. Bader, Y. Shimada, and J. Toyota 1991. Structure and developmental expression of troponin I isoforms. cDNA clone analysis of avian cardiac troponin I mRNA. J. Biol. Chem. 266:19659–19665.
  • Hidaka, K., I. Yamamoto, Y. Arai, and J. Mukai 1993. The MEF-3 motif is required for MEF-2-mediated skeletal muscle-specific induction of the rat aldolase A gene. Mol. Cell. Biol. 13:6469–6478.
  • Higuchi, R. 1990. Recombinant PCR, p. 177–183. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. J. White (ed.), PCR protocols. A guide to methods and applications. Academic Press, San Diego, Calif.
  • Hogan, B. 1994. Manipulating the mouse embryo: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Hughes, S. M., K. Koishi, M. Rudnicki, and J. Maggs 1997. MyoD protein is differentially accumulated in fast and slow skeletal muscle fibres and required for normal fibre type balance in rodents. Mech. Dev. 61:151–163.
  • Hughes, S. M., J. M. Taylor, S. J. Tapscott, C. M. Gurley, W. J. Carter, and J. Peterson 1993. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118:1137–1147.
  • Konieczny, S. F., C. P. Emerson Jr.. 1987. Complex regulation of the muscle-specific contractile protein (troponin I) gene. Mol. Cell. Biol. 7:3065–3075.
  • Kornhauser, J. M., D. E. Nelson, K. E. Mayo, and J. Takahashi 1992. Regulation of jun-B messenger RNA and AP-1 activity by light and a circadian clock. Science 255:1581–1584.
  • Lakich, M. M., T. T. Diagana, D. L. North, and J. Whalen 1998. MEF-2 and oct-1 bind to two homologous promoter sequence elements and participate in the expression of a skeletal muscle-specific gene. J. Biol. Chem. 273:15217–15226.
  • Lamonerie, T., J. J. Tremblay, C. Lanctot, M. Therrien, Y. Gauthier, and J. Drouin 1996. Ptx1, a bicoid-related homeobox transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev. 10:1284–1295.
  • Lanctot, C., B. Lamolet, and J. Drouin 1997. The bicoid-related homeoprotein Ptx1 defines the most anterior domain of the embryo and differentiates posterior from anterior lateral mesoderm. Development 124:2807–2817.
  • Lin, H., K. E. Yutzey, and J. Konieczny 1991. Muscle-specific expression of the troponin I gene requires interactions between helix-loop-helix muscle regulatory factors and ubiquitous transcription factors. Mol. Cell. Biol. 11:267–280.
  • Ma, X., D. Yuan, K. Diepold, T. Scarborough, and J. Ma 1996. The Drosophila morphogenetic protein Bicoid binds DNA cooperatively. Development 122:1195–1206.
  • Miner, J. H., and J. Wold 1990. Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc. Natl. Acad. Sci. USA 87:1089–1093.
  • Mulle, C., P. Benoit, C. Pinset, M. Roa, and J. Changeux 1988. Calcitonin gene-related peptide enhances the rate of desensitization of the nicotinic acetylcholine receptor in cultured mouse muscle cells. Proc. Natl. Acad. Sci. USA 85:5728–5732.
  • Nakayama, M., J. Stauffer, J. Cheng, S. Banerjee-Basu, E. Wawrousek, and J. Buonanno 1996. Common core sequences are found in skeletal muscle slow- and fast-fiber-type-specific regulatory elements. Mol. Cell. Biol. 16:2408–2417.
  • Parmacek, M. S., H. S. Ip, F. Jung, T. Shen, J. F. Martin, A. J. Vora, E. N. Olson, and J. Leiden 1994. A novel myogenic regulatory circuit controls slow/cardiac troponin C gene transcription in skeletal muscle. Mol. Cell. Biol. 14:1870–1885.
  • Perrin, S., and J. Gilliland 1990. Site-specific mutagenesis using asymmetric polymerase chain reaction and a single mutant primer. Nucleic Acids Res. 18:7433–7438.
  • Pollock, R., and J. Treisman 1991. Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 5:2327–2341.
  • Rao, M. V., M. J. Donoghue, J. P. Merlie, and J. Sanes 1996. Distinct regulatory elements control muscle-specific, fiber-type-selective, and axially graded expression of a myosin light-chain gene in transgenic mice. Mol. Cell. Biol. 16:3909–3922.
  • Rhodes, S. J., and J. Konieczny 1989. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 3:2050–2061.
  • Salminen, M., F. Spitz, M. Y. Fiszman, J. Demignon, A. Kahn, D. Daegelen, and J. Maire 1995. Myotube-specific activity of the human aldolase A M-promoter requires an overlapping binding site for NF1 and MEF2 factors in addition to a binding site (M1) for unknown proteins. J. Mol. Biol. 253:17–31.
  • Salminen, M., S. Lopez, P. Maire, A. Kahn, and J. Daegelen 1996. Fast-muscle-specific DNA-protein interactions occurring in vivo at the human aldolase A M promoter are necessary for correct promoter activity in transgenic mice. Mol. Cell. Biol. 16:76–85.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Schiaffino, S., and J. Reggiani 1996. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol. Rev. 76:371–423.
  • Shield, M. A., H. S. Haugen, C. H. Clegg, and J. Hauschka 1996. E-box sites and a proximal regulatory region of the muscle creatine kinaes gene differentially regulate expressioni in diverse skeletal muscle and cardiac muscle of transgenic mice. Mol. Cell. Biol. 16:5058–5068.
  • Spitz, F., M. Salminen, J. Demignon, A. Kahn, D. Daegelen, and J. Maire 1997. A combination of MEF3 and NFI proteins activates transcription in a subset of fast-twitch muscles. Mol. Cell. Biol. 17:656–666.
  • Stanojevic, D., S. Small, and J. Levine 1991. Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. Science 254:1385–1387.
  • Sugden, B., K. Marsh, and J. Yates 1985. A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein-Barr virus. Mol. Cell. Biol. 5:410–413.
  • Voytik, S. L., M. Przyborski, S. F. Badylak, and J. Konieczny 1993. Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Dev. Dyn. 198:214–224.
  • Weintraub, H., R. Davis, S. Tapscott, M. Thayer, M. Krause, R. Benezra, T. K. Blackwell, D. Truner, R. Rupp, S. Hollenberg et al.. 1991. The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766.
  • Wright, W. E., D. A. Sassoon, and J. Lin 1989. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56:607–617.
  • Yu, Y. T., R. E. Breitbart, L. B. Smoot, Y. Lee, V. Mahdavi, and J. Nadal-Ginard 1992. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 6:1783–1798.
  • Yutzey, K. E., R. L. Kline, and J. Konieczny 1989. An internal regulatory element controls troponin I gene expression. Mol. Cell. Biol. 9:1397–1405.
  • Yutzey, K. E., and J. Konieczny 1992. Different E-box regulatory sequences are functionally distinct when placed within the context of the troponin I enhancer. Nucleic Acids Res. 20:5105–5113.
  • Zot, A. S., and J. Potter 1987. Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu. Rev. Biophys. Biophys. Chem. 16:535–559.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.