10
Views
75
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Genetic Evidence for Pak1 Autoinhibition and Its Release by Cdc42

&
Pages 602-611 | Received 04 Jun 1998, Accepted 15 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Bagrodia, S., B. Derijard, R. J. Davis, and J. Cerione 1995. Cdc42 and PAK-mediated signaling leads to JNK and p38 mitogen-activated protein kinase activation. J. Biol. Chem. 270:1–4.
  • Barr, M. M., H. Tu, L. Van Aelst, and J. Wigler 1996. Identification of Ste4 as a potential regulator of Byr2 in the sexual response pathway of Schizosaccharomyces pombe. Mol. Cell. Biol. 16:5597–5603.
  • Brown, J., L. Stowers, M. Baer, A. Trejo, S. Coughlin, and J. Chant 1996. Human STE20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Curr. Biol. 6:598–605.
  • Burbelo, P. D., D. Drechsel, and J. Hall 1995. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270:29071–29074.
  • Chang, E. C., M. Barr, Y. Wang, V. Jung, H.-P. Xu, and J. Wigler 1994. Cooperative interaction of S. pombe proteins required for mating and morphogenesis. Cell 79:131–141.
  • Coso, O. A., M. Chiariello, J. C. Yu, H. Teramoto, P. Crespo, N. Xu, T. Miki, and J. Gutkind 1995. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81:1137–1146.
  • Cvrckova, F., C. De Virgilio, E. Manser, J. Pringle, and J. Nasmyth 1995. Set20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeasts. Genes Dev. 6:1817–1830.
  • Fields, S., and J. Song 1989. A novel genetic system to detect protein-protein interactions. Nature 340:245–246.
  • Gilbreth, M., P. Yang, D. Wang, J. Frost, A. Polverino, M. H. Cobb, and J. Marcus 1998. The highly conserved skb1 gene encodes a protein that interacts with SHK1, a fission yeast Ste20/PAK homolog. Proc. Natl. Acad. Sci. USA 93:13802–13807.
  • Hagen, D., G. McCaffrey, and J. Sprague 1991. Pheromone response elements are necessary and sufficient for basal and pheromone-induced transcription of the FUS1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 11:2952–2961.
  • Hill, C. S., J. Wynne, and J. Treisman 1995. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170.
  • Ito, H., Y. Fukuda, K. Murata, and J. Kimura 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Leberer, E., D. Dignar, D. Harcus, D. Thomas, and J. Whiteway 1992. The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein β subunits to downstream signalling components. EMBO J. 11:4815–4824.
  • Leberer, E., D. Dignard, L. Hougan, D. Y. Thomas, and J. Whiteway 1992. Dominant-negative mutants of yeast G-protein β subunit identify two functional regions involved in pheromone signaling. EMBO J. 11:4805–4813.
  • Leevers, S. J., H. F. Paterson, and J. Marshall 1994. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369:411–418.
  • Manser, E., T. Leung, H. Salihuddin, Z. S. Zhao, and J. Lim 1994. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367:40–46.
  • Marcus, S., A. Polverino, E. Chang, D. Robbins, M. H. Cobb, and J. Wigler 1995. Shk1, a homolog of the Saccharomyces cerevisiae Ste20 and mammalian p65pak protein kinases, is a component of a Ras/Cdc42 signaling module in the fission yeast, Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 92:6180–6184.
  • Marcus, S., A. Polverino, M. Barr, and J. Wigler 1994. Complexes between STE5 and components of the yeast pheromone-responsive MAP kinase module. Proc. Natl. Acad. Sci. USA 91:7762–7766.
  • Marshall, C. 1994. MAP kinase kinase kinase, MAP kinase kinase, and MAP kinase. Curr. Opin. Genet. Dev. 4:82–89.
  • Martin, H., A. Mendoza, J. M. Rodriguez-Pachon, M. Molina, and J. Nombela 1997. Characterization of SKM1, a Saccharomyces cerevisiae gene encoding a novel Ste20/PAK-like protein kinase. Mol. Microbiol. 23:431–444.
  • Maser, E., C. Chong, Z. S. Zhao, T. Leung, G. Michael, C. Hall, and J. Lim 1998. Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J. Biol. Chem. 2740:25070–25078.
  • Masuda, T., K.-C. Kariya, M. Shinkai, T. Okada, and J. Kataoka 1995. Protein kinase Byr2 is a target of Ras1 in the fission yeast Schizosaccharomyces pombe. J. Biol. Chem. 270:1979–1982.
  • Minden, A., A. Lin, F. X. Claret, A. Abo, and J. Karin 1995. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81:1147–1157.
  • Mullis, K. B., and J. Faloona 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155:335–350.
  • Neiman, A., and J. Herskowitz 1994. Reconstitution of a yeast protein kinase cascade in vitro: activation of the yeast MEKK homologue STE7 by STE11. Proc. Natl. Acad. Sci. USA 91:3398–3402.
  • Ottilie, S., P. J. Miller, D. I. Johnson, C. L. Creasy, M. A. Sells, S. Bagrodia, S. L. Forsburg, and J. Chernoff 1995. Fission yeast pak1+ encodes a protein kinase that interacts with Cdc42p and is involved in the control of cell polarity and mating. EMBO J. 14:5908–5919.
  • Polverino, A., J. Frost, P. Yang, M. Hutchison, A. Neiman, M. Cobb, and J. Marcus 1995. Activation of mitogen-activated protein kinase cascade by p21-activated protein kinase in cell-free extracts of Xenopus oocytes. J. Biol. Chem. 270:26067–26070.
  • Ramer, S. W., and J. Davis 1993. A dominant truncation allele identifies a gene, STE20, that encodes a putative protein kinase necessary for mating in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90:452–456.
  • Soderling, T. R. 1990. Protein kinases. J. Biol. Chem. 265:1823–1826.
  • Stokoe, D., S. G. MacDonald, K. Caddwallader, M. Symons, and J. Hancock 1994. Activation of Raf as a result of recruitment to the plasma membrane. Science 264:1463–1467.
  • Tu, H. Unpublished findings.
  • Tu, H., M. Barr, D. L. Dong, and J. Wigler 1997. Multiple regulatory domains on the Byr2 protein kinase. Mol. Cell. Biol. 17:5876–5887.
  • Van Aelst, L., M. Barr, S. Marcus, A. Polverino, and J. Wigler 1993. Complex formation between RAS and RAF and other protein kinases. Proc. Natl. Acad. Sci. USA 90:6213–6217.
  • Vojtek, A., S. M. Hollenberg, and J. Cooper 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214.
  • Ward, Y., S. Gupta, P. Jensen, M. Wartmann, R. J. Davis, and J. Kelly 1994. Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1. Nature 367:651–654.
  • White, M., C. Nicolette, A. Minden, A. Polverino, L. Van Aelst, M. Karin, and J. Wigler 1995. Multiple RAS functions can contribute to mammalian cell transformation. Cell 80:533–541.
  • Wu, C., M. Whiteway, D. Y. Thomas, and J. Leberer 1995. Molecular characterization of Ste20p, a potential mitogen-activated protein or extracellular signal-regulated kinase kinase (MEK) kinase kinase from Saccharomyces cerevisiae. J. Biol. Chem. 270:15984–15992.
  • Yang, P., S. Kansra, R. A. Pimental, M. Gibreth, and J. Marcus 1998. Cloning and characterization of shk2, a gene encoding a novel p21-activated protein kinase from fission yeast. J. Biol. Chem. 273:18481–18489.
  • Zhang, S., J. Han, M. Sells, J. Chernoff, U. G. Knaus, R. J. Ulevitch, and J. Bokoch 1995. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J. Biol. Chem. 270:23934–23936.
  • Zhao, Z. S., E. Manser, X. Q. Chen, C. Chong, T. Leung, and J. Lim 1998. A conserved negative regulatory region in αPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol. Cell. Biol. 18:2153–2163.
  • Zhou, Y., X. Zhang, and J. Ebright 1991. Random mutagenesis of gene-sized DNA molecules by use of PCR with TAQ DNA polymerase. Nucleic Acids Res. 19:6052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.