11
Views
52
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Human Osteogenesis Involves Differentiation-Dependent Increases in the Morphogenically Active 3′ Alternative Splicing Variant of Acetylcholinesterase

, , , , , , & show all
Pages 788-795 | Received 15 May 1998, Accepted 21 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Alber, R., O. Sporns, T. Weikert, E. Willbold, and J. Layer 1994. Cholinesterases and peanut agglutinin binding related to cell proliferation and axonal growth in embryonic chick limbs. Anat. Embryol. (Berlin) 190:429–438.
  • Appleyard, M. E., and J. McDonald 1991. Reduced adrenal gland acetylcholinesterase activity in Alzheimer’s disease. Lancet 338:1085–1086 (Letter.)
  • Aubin, J. E., F. Liu, L. Malaval, and J. Gupta 1995. Osteoblast and chondroblast differentiation. Bone 17:77S–83S.
  • Auld, V. J., R. D. Fetter, K. Broadie, and J. Goodman 1995. Gliotactin, a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in Drosophila. Cell 81:757–767.
  • Ben Aziz-Aloya, R., S. Seidman, R. Timberg, M. Sternfeld, H. Zakut, and J. Soreq 1993. Expression of a human acetylcholinesterase promoter-reporter construct in developing neuromuscular junctions of Xenopus embryos. Proc. Natl. Acad. Sci. USA 90:2471–2475.
  • Boskey, A. L. 1981. Current concepts of the physiology and biochemistry of calcification. Clin. Orthop. 157:225–257.
  • Brank, M., K. Zajc-Kreft, S. Kreft, R. Komel, and J. Grubic 1998. Biogenesis of acetylcholinesterase is impaired, although its mRNA level remains normal, in the glucocorticoid-treated rat skeletal muscle. Eur. J. Biochem. 251:374–381.
  • Brenner, R. F., A. Nerlich, R. Terinde, and J. Bartmann 1996. In vitro studies on clonal growth of chondrocytes in thanatophoric dysplasia. Am. J. Med. Genet. 63:401–405.
  • Bruder, S. P., D. J. Fink, and J. Caplan 1994. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J. Cell. Biochem. 56:283–294.
  • Candeliere, G. A., P. W. Jurutka, M. R. Haussler, and J. St-Arnaud 1996. A composite element binding the vitamin D receptor, retinoid X receptor α, and a member of the CTF/NF-1 family of transcription factors mediates the vitamin D responsiveness of the c-fos promoter. Mol. Cell. Biol. 16:584–592.
  • Darboux, I., Y. Barthalay, M. Piovant, and J. Hipeau-Jacquotte 1996. The structure-function relationships in Drosophila neurotactin show that cholinesterasic domains may have adhesive properties. EMBO J. 15:4835–4843.
  • de la Escalera, S., E. O. Bockamp, F. Moya, M. Piovant, and J. Jimenez 1990. Characterization and gene cloning of neurotactin, a Drosophila transmembrane protein related to cholinesterases. EMBO J. 9:3593–3601.
  • Delezoide, A. L., C. Lasselin-Benoist, L. Legeai-Mallet, P. Brice, V. Senee, A. Yayon, A. Munnich, M. Vekemans, and J. Bonaventure 1997. Abnormal FGFR 3 expression in cartilage of thanatophoric dysplasia fetuses. Hum. Mol. Genet. 6:1899–1906.
  • Dukas, K., P. Sarfati, N. Vaysse, and J. Pradayrol 1993. Quantitation of changes in the expression of multiple genes by simultaneous polymerase chain reaction. Anal. Biochem. 215:66–72.
  • Ehrlich, G., D. Patinkin, D. Ginzberg, H. Zakut, F. Eckstein, and J. Soreq 1994. Use of partially phosphorothioated “antisense” oligonucleotides for sequence-dependent modulation of hematopoiesis in culture. Antisense Res. Dev. 4:173–183.
  • Eriksen, E. F., D. S. Colvard, N. J. Berg, M. L. Graham, K. G. Mann, T. C. Spelsberg, and J. Riggs 1988. Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241:84–86.
  • Ernst, M., C. Schmid, and J. Froesch 1988. Enhanced osteoblast proliferation and collagen gene expression by estradiol. Proc. Natl. Acad. Sci. USA 85:2307–2310.
  • Grifman, M., and J. Soreq 1997. Differentiation intensifies the susceptibility of pheochromocytoma cells to antisense oligodeoxynucleotide-dependent suppression of acetylcholinesterase activity. Antisense Nucleic Acid Drug Dev. 7:351–359.
  • Huong, P. L., A. H. Kolk, T. A. Eggelte, C. P. Verstijnen, H. Gilis, and J. Hendriks 1991. Measurement of antigen specific lymphocyte proliferation using 5-bromo-deoxyuridine incorporation. An easy and low cost alternative to radioactive thymidine incorporation. J. Immunol. Methods 140:243–248.
  • Ichtchenko, K., T. Nguyen, and J. Sudhof 1996. Structures, alternative splicing, and neurexin binding of multiple neuroligins. J. Biol. Chem. 271:2676–2682.
  • Karpel, R., R. Ben Aziz-Aloya, M. Sternfeld, G. Ehrlich, D. Ginzberg, P. Tarroni, F. Clementi, H. Zakut, and J. Soreq 1994. Expression of three alternative acetylcholinesterase messenger RNAs in human tumor cell lines of different tissue origins. Exp. Cell Res. 210:268–277.
  • Karpel, R., M. Sternfeld, D. Ginzberg, E. Guhl, A. Graessmann, and J. Soreq 1996. Overexpression of alternative human acetylcholinesterase forms modulates process extensions in cultured glioma cells. J. Neurochem. 66:114–123.
  • Kaufer, D., A. Friedman, S. Seidman, and J. Soreq 1998. Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393:373–377.
  • Komm, B. S., C. M. Terpening, D. J. Benz, K. A. Graeme, A. Gallegos, M. Kore, G. L. Greene, B. W. O’Malley, and J. Hausler 1988. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells. Science 241:81–84.
  • Komori, T., H. Yagi, S. Nomura, A. Yamaguchi, K. Sasaki, K. Deguchi, Y. Shimizu, R. T. Bronson, Y. H. Gao, M. Inada, M. Sato, R. Okamoto, Y. Kitamura, S. Yoshiki, and J. Kishimoto 1997. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturation arrest of osteoblasts. Cell 89:755–764.
  • Layer, P. G., and J. Willbold 1995. Novel functions of cholinesterases in development, physiology and disease. Prog. Histochem. Cytochem. 29:1–94.
  • Lemaire, P., C. Vesque, J. Schmitt, H. Stunnenberg, R. Frank, and J. Charnay 1990. The serum-inducible mouse gene Krox-24 encodes a sequence-specific transcriptional activator. Mol. Cell. Biol. 10:3456–3467.
  • Lev-Lehman, E., V. Deutsch, A. Eldor, and J. Soreq 1997. Immature human megakaryocytes produce nuclear-associated acetylcholinesterase. Blood 89:3644–3653.
  • Lev-Lehman, E., D. Ginzberg, G. Hornreich, G. Ehrlich, A. Meshorer, F. Eckstein, H. Soreq, and J. Zakut 1994. Antisense inhibition of acetylcholinesterase gene expression causes transient hematopoietic alterations in vivo. Gene Ther. 1:127–135.
  • Liu, M., and J. Freedman 1994. Transcriptional synergism between the vitamin D3 receptor and other nonreceptor transcription factors. Mol. Endocrinol. 8:1593–1604.
  • Matsue, M., R. Kageyama, D. T. Denhardt, and J. Noda 1997. Helix-loop-helix-type transcription factor (HES-1) is expressed in osteoblastic cells, suppressed by 1,25(OH)2 vitamin D3, and modulates 1,25(OH)2 vitamin D3 enhancement of osteopontin gene expression. Bone 20:329–334.
  • Moore, J. W., G. M. G. Clark, O. Takatani, Y. Wakabayashi, J. L. Hayward, and J. Bulbrook 1983. Distribution of 17 beta-estradiol in the sera of normal British and Japanese women. J. Natl. Cancer Inst. 71:749–755.
  • Oliver, M. H., N. K. Harrison, J. E. Bishop, P. J. Cole, and J. Laurent 1989. A rapid and convenient assay for counting cells cultured in microwell plates: application for assessment of growth factors. J. Cell Sci. 92:513–518.
  • Quandt, K., K. Frech, H. Karas, E. Wingender, and J. Werner 1995. MatInd and MatInspector—new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23:4878–4884.
  • Seidman, S., M. Sternfeld, R. Ben Aziz-Aloya, R. Timberg, D. Kaufer-Nachum, and J. Soreq 1995. Synaptic and epidermal accumulations of human acetylcholinesterase are encoded by alternative 3′-terminal exons. Mol. Cell. Biol. 15:2993–3002.
  • Seidman, S., R. Ben Aziz-Aloya, R. Timberg, Y. Loewenstein, B. Velan, A. Shafferman, J. Liao, B. Norgaard-Pedersen, U. Brodbeck, and J. Soreq 1994. Overexpressed monomeric human acetylcholinesterase induces subtle ultrastructural modifications in developing neuromuscular junctions of Xenopus laevis embryos. J. Neurochem. 62:1670–1681.
  • Shapira, M., M. Korner, L. Bosgraaf, I. Tur-Kaspa, and H. Soreq. The human ACHE locus includes a polymorphic enhancer domain 17 kb upstream from the transcription start site. In D. M. Quinn, B. P. Doctor, and P. Taylor (ed.), Cholinesterases and related proteins, in press. Plenum Press, New York, N.Y.
  • Sillence, D. O., W. A. Horton, and J. Rimoin 1979. Morphologic studies in skeletal dysplasias. Am. J. Pathol. 96:813–859.
  • Soreq, H., D. Patinkin, E. Lev-Lehman, M. Grifman, D. Ginzberg, F. Eckstein, and J. Zakut 1994. Antisense oligonucleotide inhibition of acetylcholinesterase gene expression induces progenitor cell expansion and suppresses hematopoietic apoptosis ex vivo. Proc. Natl. Acad. Sci. USA 91:7907–7911.
  • Sternfeld, M., G. Ming, H. Song, K. Sela, R. Timberg, M. Poo, and J. Soreq 1998. Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini. J. Neurosci. 18:1240–1249.
  • Sylvia, V. L., Z. Schwartz, L. Schuman, R. T. Morgan, S. Mackey, R. Gomez, and J. Boyan 1993. Maturation-dependent regulation of protein kinase C activity by vitamin D3 metabolites in chondrocyte culture. J. Cell. Physiol. 157:271–278.
  • Tora, L., M. P. Gaub, S. Madar, A. Dierich, M. Bellard, and J. Chambon 1988. Cell-specific activity of a GGTCA half-palindromic oestrogen-responsive element in the chicken ovalbumin gene promoter. EMBO J. 7:3771–3778.
  • Umezu, Y., N. Nagata, Y. Doi, H. Furukawa, T. Sagara, T. Hayashida, H. Ogata, and J. Fujimoto 1993. Cytochemical and immunocytochemical demonstration of acetylcholinesterase of the prenatal rat lower limb. Arch. Histol. Cytol. 56:217–224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.