6
Views
29
CrossRef citations to date
0
Altmetric
Gene Expression

Histone Acetyltransferase and Protein Kinase Activities Copurify with a Putative Xenopus RNA Polymerase I Holoenzyme Self-Sufficient for Promoter-Dependent Transcription

, , &
Pages 796-806 | Received 04 May 1998, Accepted 23 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Albert, A.-C. Unpublished data.
  • Allende, J. E., and J. Allende 1995. Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J. 9:313–323.
  • Bazett-Jones, D., B. Leblanc, M. Herfort, and J. Moss 1994. Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF. Science 264:1134–1137.
  • Bell, S. P., H. M. Jantzen, and J. Tjian 1990. Assembly of alternative multiprotein complexes directs rRNA promoter selectivity. Genes Dev. 4:943–954.
  • Bell, S. P., R. M. Learned, H. M. Jantzen, and J. Tjian 1988. Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. Science 241:1192–1197.
  • Bell, S. P., C. S. Pikaard, R. H. Reeder, and J. Tjian 1989. Molecular mechanisms governing species-specific transcription of ribosomal RNA. Cell 59:489–497.
  • Berk, A. J., and J. Sharp 1977. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12:721–732.
  • Bodeker, M., C. Cairns, and J. McStay 1996. Upstream binding factor stabilizes Rib 1, the TATA-binding-protein-containing Xenopus laevis RNA polymerase I transcription factor, by multiple protein interactions in a DNA-independent manner. Mol. Cell. Biol. 16:5572–5578.
  • Brownell, J. E., and J. Allis 1995. An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc. Natl. Acad. Sci. USA 92:6364–6368.
  • Bunick, D., R. Zandomeni, S. Ackerman, and J. Weinmann 1982. Mechanism of RNA polymerase II-specific initiation of transcription in vitro: ATP requirement and uncapped runoff transcripts. Cell 29:877–886.
  • Buratowski, S. 1994. The basics of basal transcription by RNA polymerase II. Cell 77:1–3.
  • Chen, Z. J., and J. Pikaard 1997. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 11:2124–2136.
  • Clos, J., D. Buttgereit, and J. Grummt 1986. A purified transcription factor (TIF-IB) binds to essential sequences of the mouse rDNA promoter. Proc. Natl. Acad. Sci. USA 83:604–608.
  • Comai, L., J. C. B. M. Zomerdijk, H. Beckmann, S. Zhou, A. Admon, and J. Tjian 1994. Reconstitution of transcription factor SL1: exclusive binding of TBP by SL1 or TFIID subunits. Science 266:1966–1972.
  • Cormack, B. P., and J. Struhl 1992. The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell 69:685–696.
  • Denton, M., and C. S. Pikaard. Unpublished data.
  • Gatica, M., A. Jedlicki, C. C. Allende, and J. Allende 1994. Activity of the E75E76 mutant of the alpha subunit of casein kinase II from Xenopus laevis. FEBS Lett. 339:93–96.
  • Grant, P. A., L. Duggan, J. Cote, S. M. Roberts, J. E. Brownell, R. Candau, R. Ohba, T. Owen-Hughes, C. D. Allis, F. Winston, S. L. Berger, and J. Workman 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11:1640–1650.
  • Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389:349–352.
  • Halle, J.-P., and J. Meisterernst 1996. Gene expression: increasing evidence for a transcriptosome. Trends Genet. 12:161–163.
  • Hannan, R. D., W. M. Hempel, A. Cavanaugh, T. Arino, S. I. Dimitrov, T. Moss, and J. Rothblum 1998. Affinity purification of mammalian RNA polymerase I. J. Biol. Chem. 273:1257–1267.
  • Hathaway, G. M., T. H. Lubben, and J. Traugh 1980. Inhibition of casein kinase II by heparin. J. Biol. Chem. 255:8038–8041.
  • Jacob, S. T. 1995. Regulation of ribosomal gene transcription. Biochem. J. 306:617–626.
  • Jantzen, H.-M., A. M. Chow, D. S. King, and J. Tjian 1992. Multiple domains of the RNA polymerase I activator hUBF interact with the TATA-binding protein complex hSL1 to mediate transcription. Genes Dev. 6:1950–1963.
  • Kadonaga, J. T. 1998. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92:307–313.
  • Kassavetis, G. A., C. Bardeleben, B. Bartholomew, B. R. Braun, C. A. P. Joazeiro, M. Pisano, E. P. Geiduschek 1994. Transcription by RNA polymerase III, p. 107–126. In R. C. Conaway, J. W. Conaway (ed.), Transcription mechanisms and regulation. Raven Press, New York, N.Y.
  • Kato, H., M. Nagamine, R. Kominami, and J. Muramatsu 1986. Formation of the transcription initiation complex on mammalian rDNA. Mol. Cell. Biol. 6:3418–3427.
  • Kermekchiev, M., J. L. Workman, and J. Pikaard 1997. Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1. Mol. Cell. Biol. 17:5833–5842.
  • Kim, Y. J., S. Björklund, Y. Li, M. H. Sayre, and J. Kornberg 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608.
  • Koleske, A. J., and J. Young 1995. The RNA polymerase II holoenzyme and its implications for gene regulation. Trends Biochem. Sci. 20:113–116.
  • Koleske, A. J., and J. Young 1994. An RNA polymerase II holoenzyme responsive to activators. Nature 368:466–469.
  • Kuhn, A., T. M. Gottlieb, S. P. Jackson, and J. Grummt 1995. DNA-dependent protein kinase: a potent inhibitor of transcription by RNA polymerase I. Genes Dev. 9:193–203.
  • Kuhn, A., and J. Grummt 1992. Dual role of the nucleolar transcription factor UBF: trans-activator and antirepressor. Proc. Natl. Acad. Sci. USA 89:7340–7344.
  • Kuhn, A., V. Stefanovsky, and J. Grummt 1993. The nucleolar transcription activator UBF relieves Ku antigen-mediated repression of mouse ribosomal gene transcription. Nucleic Acids Res. 21:2057–2063.
  • Li, Y., S. Bjorklund, Y. J. Kim, and J. Kornberg 1996. Yeast RNA polymerase II holoenzyme. Methods Enzymol. 273:172–175.
  • Liao, S. M., J. Zhang, D. A. Jeffery, A. J. Koleske, C. M. Thompson, D. M. Chao, M. Viljoen, H. J. vanVuuren, and J. Young 1995. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374:193–196.
  • Litchfield, D. W., and J. Luscher 1993. Casein kinase II in signal transduction and cell cycle regulation. Mol. Cell. Biochem. 127/128:187–199.
  • Lobo, S. M., N. T. Hernandez 1994. Transcription of snRNA genes by RNA polymerases II and III, p. 127–160. In R. C. Conaway, J. W. Conaway (ed.), Transcription mechanisms and regulation. Raven Press, New York, N.Y.
  • Lofquist, A. K., H. Li, M. A. Imboden, and J. Paule 1993. Promoter opening (melting) and transcription initiation by RNA polymerase I requires neither nucleotide beta,gamma hydrolysis nor protein phosphorylation. Nucleic Acids Res. 21:3233–3238.
  • Maldonado, E., R. Shiekhattar, M. Sheldon, H. Cho, R. Drapkin, P. Rickert, E. Lees, C. W. Anderson, S. Linn, and J. Reinberg 1996. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381:86–89.
  • McStay, B., C. H. Hu, C. S. Pikaard, and J. Reeder 1991. xUBF and Rib 1 are both required for formation of a stable polymerase I promoter complex in X. laevis. EMBO J. 10:2297–2303.
  • McStay, B., and J. Reeder 1990. A DNA-binding protein is required for termination of transcription by RNA polymerase I in Xenopus laevis. Mol. Cell. Biol. 10:2793–2800.
  • McStay, B., and J. Reeder 1986. A termination site for Xenopus RNA polymerase I also acts as an element of an adjacent promoter. Cell 47:913–920.
  • Meisner, H., and J. Czech 1991. Phosphorylation of transcriptional factors and cell-cycle-dependent proteins by casein kinase II. Curr. Opin. Cell Biol. 3:474–483.
  • Mizzen, C. A., X. J. Yang, T. Kokubo, J. E. Brownell, A. J. Bannister, T. Owen-Hughes, J. Workman, L. Wang, S. L. Berger, T. Kouzarides, Y. Nakatani, and J. Allis 1996. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87:1261–1270.
  • Moss, T., and J. Stefanovsky 1995. Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. Prog. Nucleic Acids Res. Mol. Biol. 50:25–66.
  • O’Mahony, D. J., S. D. Smith, W. Xie, and J. Rothblum 1992. Analysis of the phosphorylation, DNA-binding and dimerization properties of the RNA polymerase I transcription factors UBF1 and UBF2. Nucleic Acids Res. 20:1301–1308.
  • Ossipow, V., J. P. Tassan, E. A. Nigg, and J. Schibler 1995. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83:137–146.
  • Pan, G., T. Aso, and J. Greenblatt 1997. Interaction of elongation factors TFIIS and elongin A with a human RNA polymerase II holoenzyme capable of promoter-specific initiation and responsive to transcriptional activators. J. Biol. Chem. 272:24563–24571.
  • Paule, M. R. 1994. Transcription of ribosomal RNA by eukaryotic RNA polymerase I, p. 83–106. In R. C. Conaway, J. W. Conaway (ed.), Transcription mechanisms and regulation. Raven Press, New York, N.Y.
  • Putnam, C. D., G. P. Copenhaver, M. L. Denton, and J. Pikaard 1994. The RNA polymerase I transactivator upstream binding factor requires its dimerization domain and high-mobility group (HMG) box 1 to bend, wrap, and positively supercoil enhancer DNA. Mol. Cell. Biol. 14:6476–6488.
  • Reeder R. H. 1992. Regulation of transcription by RNA polymerase I 1: Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Reeder, R. H., D. Pennock, B. McStay, J. Roan, E. Tolentino, and J. Walker 1987. Linker scanner mutagenesis of the Xenopus laevis ribosomal gene promoter. Nucleic Acids Res. 15:7429–7441.
  • Reeder, R. H., C. S. Pikaard, and J. McStay 1995. UBF, an architectural element for RNA polymerase I promoters. Nucleic Acids Mol. Biol. 9:251–263.
  • Saez-Vasquez, J., and J. Pikaard 1997. Extensive purification of a putative RNA polymerase I holoenzyme from plants that accurately initiates rRNA gene transcription in vitro. Proc. Natl. Acad. Sci. USA 94:11869–11874.
  • Schnapp, A., and J. Grummt 1991. Transcription complex formation at the mouse rDNA promoter involves the stepwise association of four transcription factors and RNA polymerase I. J. Biol. Chem. 266:24588–24595.
  • Schultz, M. C., R. H. Reeder, and J. Hahn 1992. Variants of the TATA-binding protein can distinguish subsets of RNA polymerase I, II, and III promoters. Cell 69:697–702.
  • Schwartz, L. B., and J. Roeder 1974. Purification and subunit structure of deoxyribonucleic acid-dependent ribonucleic acid polymerase I from mouse myeloma, MOPC 315. J. Biol. Chem. 249:5898–5906.
  • Seither, P., and J. Grummt 1996. Molecular cloning of RPA2, the gene encoding the second largest subunit of mouse RNA polymerase I. Genomics 37:135–139.
  • Seither, P., S. Iben, and J. Grummt 1998. Mammalian RNA polymerase I exists as a holoenzyme with associated basal transcription factors. J. Mol. Biol. 275:43–53.
  • Serizawa, H., J. W. Conaway, R. C. Conaway 1994. Transcription initiation by mammalian RNA polymerase II, p. 27–44. In R. C. Conaway, J. W. Conaway (ed.), Transcription mechanisms and regulation. Raven Press, New York, N.Y.
  • Smith, S. D., D. J. O’Mahony, B. T. Kinsella, and J. Rothblum 1993. Transcription from the rat 45S ribosomal DNA promoter does not require the factor UBF. Gene Expr. 3:229–236.
  • Smith, S. D., E. Oriahi, D. Lowe, Y. Yang, D. O’Mahony, K. Rose, K. Chen, and J. Rothblum 1990. Characterization of factors that direct transcription of rat ribosomal DNA. Mol. Cell. Biol. 10:3105–3116.
  • Steffan, J. S., D. A. Keys, J. A. Dodd, and J. Nomura 1996. The role of TBP in rDNA transcription by RNA polymerase I in Saccharomyces cerevisiae: TBP is required for upstream activation factor-dependent recruitment of core factor. Genes Dev. 10:2551–2563.
  • Steger, D. J., and J. Workman 1996. Remodeling chromatin structures for transcription: what happens to the histones? Bioessays 18:875–884.
  • Tanaka, N., H. Kato, Y. Ishikawa, K. Hisatake, K. Tashiro, R. Kominami, and J. Muramatsu 1990. Sequence-specific binding of a transcription factor TFID to the promoter region of mouse ribosomal RNA gene. J. Biol Chem. 265:13836–13842.
  • Tantin, D., and J. Carey 1994. A heteroduplex template circumvents the energetic requirement for ATP during activated transcription by RNA polymerase II. J. Biol. Chem. 269:17397–17400.
  • Tower, J., V. C. Culotta, and J. Sollner-Webb 1986. Factors and nucleotide sequences that direct ribosomal DNA transcription and their relationship to the stable transcription complex. Mol. Cell. Biol. 6:3451–3462.
  • Voit, R., A. Kuhn, E. E. Sander, and J. Grummt 1995. Activation of mammalian ribosomal gene transcription requires phosphorylation of the nucleolar transcription factor UBF. Nucleic Acids Res. 23:2593–2599.
  • Voit, R., A. Schnapp, A. Kuhn, H. Rosenbauer, P. Hirschmann, H. G. Stunnenberg, and J. Grummt 1992. The nucleolar transcription factor mUBF is phosphorylated by casein kinase II in the C-terminal hyperacidic tail which is essential for transactivation. EMBO J. 11:2211–2218.
  • Wade, P. A., and J. Wolffe 1997. Histone acetyltransferases in control. Curr. Biol. 7:82–84.
  • Wang, Z., T. Luo, and J. Roeder 1997. Identification of an autonomously initiating RNA polymerase III holoenzyme containing a novel factor that is selectively inactivated during protein synthesis inhibition. Genes Dev. 11:2371–2382.
  • Wilson, C. J., D. M. Chao, A. N. Imbalzano, G. R. Schnitzler, R. E. Kingston, and J. Young 1996. RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84:235–244.
  • Wingender, E., D. Jahn, and J. Seifart 1986. Association of RNA polymerase III with transcription factors in the absence of DNA. J. Biol. Chem. 261:1409–1413.
  • Zawel, L., and J. Reinberg 1993. Initiation of transcription by RNA polymerase II: a multi-step process. Prog. Nucleic Acids Res. Mol. Biol. 44:67–108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.