103
Views
265
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Functional Organization of the Yeast SAGA Complex: Distinct Components Involved in Structural Integrity, Nucleosome Acetylation, and TATA-Binding Protein Interaction

, , , , , , , & show all
Pages 86-98 | Received 22 Jun 1998, Accepted 18 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Ausubel F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl 1994. Current protocols in molecular biology. Wiley & Sons, Inc., New York, N.Y.
  • Bannister, A. J., and J. Kouzarides 1996. The CBP co-activator is a histone acetyltransferase. Nature 384:641–643.
  • Barlev, N. A., R. Candau, L. Wang, P. Darpino, N. Silverman, and J. Berger 1995. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J. Biol. Chem. 270:19337–19344.
  • Barlev, N. A., V. Poltoratsky, T. Owen-Hughes, C. Ying, L. Liu, J. L. Workman, and J. Berger 1998. Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku/DNA-dependent protein kinase complex. Mol. Cell. Biol. 18:1349–1358.
  • Berger, S. L., B. Piña, N. Silverman, G. A. Marcus, J. Agapite, J. L. Regier, S. J. Triezenberg, and J. Guarente 1992. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 70:251–265.
  • Boeke, J. D., F. LaCroute, and J. Fink 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Bradbury, E. M. 1992. Reversible histone modifications and the chromosome cell cycle. Bioessays 14:9–16.
  • Braunstein, M., A. B. Rose, S. G. Holmes, C. D. Allis, and J. Broach 1993. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7:592–604.
  • Brownell, J. E., J. Zhou, T. Ranalli, R. Kobayashi, D. G. Edmondson, S. Y. Roth, and J. Allis 1996. Tetrahymena histone acetyltransferase A: a transcriptional co-activator linking gene expression to histone acetylation. Cell 84:843–851.
  • Cairns, B. R., Y. Lorch, Y. Li, M. Zhang, L. Lacomis, H. Erdjument-Bromage, P. Tempst, J. Du, B. Laurent, and J. Kornberg 1996. RSC, an essential, abundant chromatin-remodeling complex. Cell 87:1249–1260.
  • Candau, R., and J. Berger 1996. Structural and functional analysis of yeast putative adaptors: evidence for an adaptor complex in vivo. J. Biol. Chem. 271:5237–5345.
  • Candau, R., P. A. Moore, L. Wang, N. Barlev, C. Y. Ying, C. A. Rosen, and J. Berger 1996. Identification of functionally conserved human homologues of the yeast adaptors ADA2 and GCN5. Mol. Cell. Biol. 16:593–602.
  • Candau, R., J. Zhou, C. D. Allis, and J. Berger 1997. Histone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo. EMBO J. 16:555–565.
  • Chiang, Y. C., P. Komarnitsky, D. Chase, and J. Denis 1996. ADR1 activation domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB. J. Biol. Chem. 271:32359–32365.
  • Côté, J., J. Quinn, J. L. Workman, and J. Peterson 1994. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265:53–60.
  • Côté, J., R. T. Utley, and J. Workman 1995. Analysis of transcription factor binding to nucleosomes. Methods Mol. Genet. 6:108–128.
  • Eisenmann, D. M., K. M. Arndt, S. L. Ricupero, J. W. Rooney, and J. Winston 1992. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev. 6:1319–1331.
  • Eisenmann, D. M., C. Chapon, S. M. Roberts, C. Dollard, and J. Winston 1994. The Saccharomyces cerevisiae SPT8 gene encodes a very acidic protein that is functionally related to SPT3 and TATA-binding protein. Genetics 137:647–657.
  • Eisenmann, D. M., C. Dollard, and J. Winston 1989. SPT15, the gene encoding the yeast TATA binding factor TFIID, is required for normal transcription initiation in vivo. Cell 58:1183–1191.
  • Gansheroff, L. J., C. Dollard, P. Tan, and J. Winston 1995. The Saccharomyces cerevisiae SPT7 gene encodes a very acidic protein important for transcription in vivo. Genetics 139:523–536.
  • Georgakopoulos, T., N. Gounalaki, and J. Thireos 1995. Genetic evidence for the interaction of the yeast transcriptional co-activator proteins GCN5 and ADA2. Mol. Gen. Genet. 246:723–728.
  • Georgakopoulos, T., and J. Thireos 1992. Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J. 11:4145–4152.
  • Grant, P. A. Unpublished data.
  • Grant, P. A., L. Duggan, J. Côté, S. M. Roberts, J. E. Brownell, R. Candau, R. Ohba, T. Owen-Hughes, C. D. Allis, F. Winston, S. L. Berger, and J. Workman 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11:1640–1650.
  • Grant, P. A., D. Schieltz, M. G. Pray-Grant, D. J. Steger, J. C. Reese, J. R. Yates III, and J. Workman 1998. A subset of TAFIIs are integral components of the SAGA complex required for nucleosome acetylation and transcription stimulation. Cell 94:45–53.
  • Grant, P. A., D. E. Sterner, L. J. Duggan, J. L. Workman, and J. Berger 1998. The SAGA unfolds: convergence of transcription regulators in chromatin-modifying complexes. Trends Cell. Biol. 8:193–197.
  • Gregory, P. D., A. Schmid, M. Zavari, L. Liu, S. L. Berger, and J. Hörz 1998. Absence of Gcn5 HAT activity defines a novel state in the opening of chromatin at the PHO5 promoter in yeast. Mol. Cell 1:495–505.
  • Guarente, L. 1995. Transcriptional coactivators in yeast and beyond. Trends Biochem. Sci. 20:517–521.
  • Hager, G., C. Smith, J. Svaren, and J. Hörz 1995. Initiation of expression: remodelling genes Chromatin structure and gene expression In S. C. R. Elgin (ed.), 9:89–103 IRL Press, Oxford, England.
  • Hahn, S., S. Buratowski, P. A. Sharp, and J. Guarente 1989. Isolation of the gene encoding the yeast TATA binding protein TFIID: a gene identical to the SPT15 suppressor of Ty element insertions. Cell 58:1173–1181.
  • Hampsey, M. 1997. A review of phenotypes in Saccharomyces cerevisiae. Yeast 13:1099–1133.
  • Harlow, E., I. Lane 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Haynes, S. R., C. Dollard, F. Winston, S. Beck, J. Trowsdale, and J. Dawid 1992. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 20:2603.
  • Hebbes, T. R., A. L. Clayton, A. W. Thorne, and J. Crane-Robinson 1994. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J. 13:1823–1830.
  • Hirschhorn, J. N., S. A. Brown, C. D. Clark, and J. Winston 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6:2288–2298.
  • Horiuchi, J., N. Silverman, G. A. Marcus, and J. Guarente 1995. ADA3, a putative transcriptional adaptor, consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex. Mol. Cell. Biol. 15:1203–1209.
  • Horiuchi, J., N. Silverman, B. Piña, G. A. Marcus, and J. Guarente 1997. ADA1, a novel component of the ADA/GCN5 complex, has broader effects than GCN5, ADA2, or ADA3. Mol. Cell. Biol. 17:3220–3228.
  • Imbalzano, A. N., H. Kwon, M. R. Green, and J. Kingston 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370:481–485.
  • Ito, T., M. Bulger, M. J. Pazin, R. Kobayashi, and J. Kadonaga 1997. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90:145–155.
  • Iyer, V., and J. Struhl 1996. Absolute mRNA levels and transcriptional initiation rates in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:5208–5212.
  • Jeanmougin, F., J.-M. Wurtz, B. Le Douarin, P. Chambon, and J. Losson 1997. The bromodomain revisited. Trends Biochem. Sci. 22:151–153.
  • Jeppesen, P., and J. Turner 1993. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74:281–289.
  • Kingston, R. E., C. A. Bunker, and J. Imbalzano 1996. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 10:905–920.
  • Kuo, M.-H., J. Zhou, P. Jambeck, M. E. A. Churchill, and J. Allis 1998. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12:627–639.
  • Kwon, H., A. N. Imbalzano, P. A. Khavari, R. E. Kingston, and J. Green 1994. Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature 370:477–481.
  • Laurent, B. C., M. A. Treitel, and J. Carlson 1990. The SNF5 protein of Saccharomyces cerevisiae is a glutamine- and proline-rich transcriptional activator that affects expression of a broad spectrum of genes. Mol. Cell. Biol. 10:5616–5625.
  • Marcus, G. A., J. Horiuchi, N. Silverman, and J. Guarente 1996. ADA5/SPT20 links the ADA and SPT genes, which are involved in yeast transcription. Mol. Cell. Biol. 16:3197–3205.
  • Marcus, G. A., N. Silverman, S. L. Berger, J. Horiuchi, and J. Guarente 1994. Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBO J. 13:4807–4815.
  • Mizzen, C. A., X.-J. Yang, T. Kokubo, J. E. Brownell, A. J. Bannister, T. Owen-Hughes, J. Workman, L. Wang, S. L. Berger, T. Kouzarides, Y. Nakatani, and J. Allis 1996. The TAFII250 subunit of TFIID has histone acetyltransferase activity. Cell 87:1261–1270.
  • O’Neill, L. P., and J. Turner 1995. Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J. 14:3946–3957.
  • Ogryzko, V. V., R. L. Schlitz, V. Russanova, B. H. Howard, and J. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959.
  • Owen-Hughes, T., R. T. Utley, J. Côté, C. L. Peterson, and J. Workman 1996. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science 273:513–516.
  • Owen-Hughes, T., and J. Workman 1994. Experimental analysis of chromatin function in transcription control. Crit. Rev. Eukaryotic Gene Expr. 4:403–441.
  • Ozer, J., L. E. Lezina, J. Ewing, S. Audi, and J. Lieberman 1998. Association of transcription factor IIA with TATA binding protein is required for transcriptional activation of a subset of promoters and cell cycle progression in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:2559–2570.
  • Paranjape, S. M., R. T. Kamakaka, and J. Kadonaga 1994. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63:265–297.
  • Peterson, C. L., and J. Herskowitz 1992. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68:573–583.
  • Piña, B., S. Berger, G. A. Marcus, N. Silverman, J. Agapite, and J. Guarente 1993. ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2. Mol. Cell. Biol. 13:5981–5989.
  • Pollard, K. J., and J. Peterson 1997. Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression. Mol. Cell. Biol. 17:6212–6222.
  • Roberts, S. M., and J. Winston 1997. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics 147:451–465.
  • Roberts, S. M., and J. Winston 1996. SPT20/ADA5 encodes a novel protein functionally related to the TATA-binding protein and important for transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:3206–3213.
  • Rose, M. D., F. Winston, P. Hieter 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Ruiz-García, A. B., R. Sendra, M. Pamblanco, and J. Tordera 1997. Gcn5p is involved in the acetylation of histone H3 in nucleosomes. FEBS Lett. 403:186–190.
  • Saleh, A., V. Lang, R. Cook, and J. Brandl 1997. Identification of native complexes containing the yeast coactivator/repressor proteins NGG1/ADA3 and ADA2. J. Biol. Chem. 272:5571–5578.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Scherer, S., and J. Davis 1979. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc. Natl. Acad. Sci. USA 76:4951–4955.
  • Sikorski, R. S., and J. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Silverman, N., J. Agapite, and J. Guarente 1994. Yeast ADA2 protein binds to the VP16 protein activation domain and activates transcription. Proc. Natl. Acad. Sci. USA 91:11665–11668.
  • Steger, D. J., and J. Workman 1996. Remodeling chromatin structures for transcription: What happens to the histones? Bioessays 18:875–884.
  • Struhl, K. 1986. Constitutive and inducible Saccharomyces cerevisiae promoters: evidence for two distinct molecular mechanisms. Mol. Cell. Biol. 6:3847–3853.
  • Svaren, J., and J. Hörz 1996. Regulation of gene expression by nucleosomes. Curr. Opin. Genet. Dev. 6:164–170.
  • Tamkun, J. W., R. Deuring, M. P. Scott, M. Kissinger, A. M. Pattatucci, T. C. Kaufman, and J. Kennison 1992. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68:561–572.
  • Tsukiyama, T., and J. Wu 1995. Purification and properties of an ATP dependent nucleosome remodeling factor. Cell 83:1011–1020.
  • Turner, B. M., A. J. Birley, and J. Lavender 1992. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69:375–384.
  • Utley, R. T., K. Ikeda, P. A. Grant, J. Côté, D. J. Steger, A. Eberharter, S. John, and J. Workman 1998. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394:498–502.
  • Varga-Weisz, P. D., M. Wilm, E. Bonte, K. Dumas, M. Mann, and J. Becker 1997. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388:598–602.
  • Vettese-Dadey, M., P. A. Grant, T. R. Hebbes, C. Crane-Robinson, C. D. Allis, and J. Workman 1996. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15:2508–2518.
  • Wang, L., L. Liu, and J. Berger 1998. Critical residues for histone acetylation by GCN5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev. 12:640–653.
  • Winston, F. 1992. Analysis of SPT genes: a genetic approach toward analysis of TFIID, histones, and other transcription factors of yeast, p. 1271–1293. In S. L. McKnight, K. R. Yamamoto (ed.), Transcriptional regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Winston, F., C. Dollard, and J. Ricupero-Hovasse 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55.
  • Wolffe, A. P. 1992. Chromatin: structure and function. Academic Press, London, England.
  • Yang, X.-J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and J. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral E1A oncoprotein. Nature 382:319–324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.