14
Views
45
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Regulation of the mdm2 Oncogene by Thyroid Hormone Receptor

, , &
Pages 864-872 | Received 14 May 1998, Accepted 21 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Au-Fliegner, M., E. Helmer, J. Casanova, B. M. Raaka, and J. Samuels 1993. The conserved ninth C-terminal heptad in thyroid hormone and retinoic acid receptors mediates diverse responses by affecting heterodimer but not homodimer formation. Mol. Cell. Biol. 13:5725–5737.
  • Bagchi, M. K., S. Y. Tsai, M.-J. Tsai, and J. O’Malley 1987. Purification and characterization of chicken ovalbumin gene upstream promoter transcription factor from homologous oviduct cells. Mol. Cell. Biol. 7:4151–4158.
  • Baker, S. J., S. Markowitz, E. R. Fearon, J. K. U. Willson, and J. Vogelstein 1990. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912–915.
  • Barak, Y. T., T. Juven, R. Haffner, and J. Oren 1993. mdm2 expression is induced by wild type p53 activity. EMBO J. 12:461–468.
  • Barettino, D., T. H. Bugge, P. Bartunek, M. V. Ruiz, V. Sonntag-Buck, H. Beug, M. Zenke, and J. Stunnenberg 1993. Unliganded T3R, but not its oncogenic variant, v-erbA, suppresses RAR-dependent transactivation by titrating out RXR. EMBO J. 12:1343–1354.
  • Brent, G. A., J. W. Harney, Y. Chen, R. L. Warne, D. D. Moore, and J. Larsen 1989. Mutations of the rat growth hormone promoter which increase and decrease response to thyroid hormone define a consensus thyroid hormone response element. Mol. Endocrinol. 3:1996–2004.
  • Brent, G. A., P. R. Larsen, J. W. Harney, R. J. Koenig, and J. Moore 1989. Functional characterization of the rat growth hormone promoter elements required for induction by thyroid hormone with and without a co-transfected beta type thyroid hormone receptor. J. Biol. Chem. 264:178–182.
  • Cahilly-Snyder, L., T. Yang-Feng, U. Francke, and J. George 1987. Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat. Cell Mol. Genet. 13:235–244.
  • Casanova, J., Z. D. Horowitz, R. P. Copp, W. R. McIntyre, A. Pascual, and J. Samuels 1984. Photoaffinity labeling of thyroid hormone nuclear receptors: influence of n-butyrate and analysis of the half-lives of the 57,000 and 47,000 molecular weight receptor forms. J. Biol. Chem. 259:12084–12091.
  • Chatterjee, V. K. K., J.-K. Lee, A. Rentoumis, and J. Jameson 1989. Negative regulation of the thyroid stimulating hormone alpha gene by thyroid hormone: receptor interaction adjacent to the TATA box. Proc. Natl. Acad. Sci. USA 86:9114–9118.
  • Cooney, A. J., X. Leng, S. Y. Tsai, B. W. O’Malley, and J. Tsai 1993. Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transactivation by the vitamin D, thyroid hormone, and retinoic acid receptors. J. Biol. Chem. 268:4152–4160.
  • Cooney, A. J., S. Y. Tsai, B. W. O’Malley, and J. Tsai 1992. Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol. Cell. Biol. 12:4153–4163.
  • Deavergne, B., K. J. Petty, and J. Nikodem 1991. Functional characterization and receptor binding studies of the malic enzyme thyroid hormone response element. J. Biol. Chem. 266:1006–1013.
  • Desai-Yajnik, V., E. Hadzic, P. Modlinger, S. Malhotra, G. Gechlik, and J. Samuels 1995. Interactions of thyroid hormone receptor with the human immunodeficiency virus type 1 (HIV-1) long terminal repeat and the HIV-1 Tat transactivator. J. Virol. 69:5103–5112.
  • Desai-Yajnik, V., and J. Samuels 1993. The NF-κB and Sp1 DNA motifs of the human immunodeficiency virus type 1 long terminal repeat function as novel thyroid hormone response elements. Mol. Cell. Biol. 13:5057–5069.
  • Dubs-Poterszman, M. C., B. Tocque, and J. Wasylyk 1995. MDM2 transformation in the absence of p53 and abrogation of the p107 G1 cell-cycle arrest. Oncogene 11:2445–2449.
  • El-Deiry, W. S., S. E. Kern, J. A. Pietenpol, K. W. Kinzler, and J. Vogelstein 1992. Human genomic DNA sequences define a consensus binding site for p53. Nat. Genet. 1:44–49.
  • Evans, R. M. 1988. The steroid and thyroid hormone receptor superfamily. Science 240:889–895.
  • Farkharzadeh, S. S., S. P. Trusko, and J. George 1991. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 10:1565–1569.
  • Fields, S., and J. Jang 1990. The p53 proto-oncogene can act as a suppressor of transformation. Science 249:1046–1049.
  • Finlay, C. A. 1993. The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol. Cell. Biol. 13:301–306.
  • Flug, F., R. P. Copp, J. Casanova, Z. D. Horowitz, L. Janocko, M. Plotnick, and J. Samuels 1987. cis-acting elements of the rat growth hormone gene which mediate basal and regulated expression by thyroid hormone. J. Biol. Chem. 262:6373–6382.
  • Forman, B. M., J. Casanova, B. M. Raaka, J. Ghysdael, and J. Samuels 1992. Half-site spacing and orientation determines whether thyroid hormone and retinoic acid receptors and related factors bind to DNA response elements as monomers, homodimers, or heterodimers. Mol. Endocrinol. 6:429–442.
  • Forman, B. M., and J. Samuels 1990. Interactions among a subfamily of nuclear hormone receptors: the regulatory zipper model. Mol. Endocrinol. 4:1293–1301.
  • Forman, B. M., and J. Samuels 1991. pEXPRESS: a family of expression vectors containing a single transcription unit active in prokaryotes, eukaryotes and in vitro. Gene 105:9–15.
  • Forman, B. M., C.-R. Yang, M. Au, J. Casanova, J. Ghysdael, and J. Samuels 1989. A domain containing leucine zipper like motifs mediates novel in vivo interactions between the thyroid hormone and retinoic acid receptors. Mol. Endocrinol. 3:1610–1626.
  • Forman, B. M., C.-R. Yang, F. Stanley, J. Casanova, and J. Samuels 1988. c-erbA protooncogenes mediate thyroid hormone-dependent and -independent regulation of the rat growth hormone and prolactin genes. Mol. Endocrinol. 2:902–911.
  • Geffner, M. E., F. Su, N. Ross, J. M. Hershman, C. V. Dop, J. B. Menke, E.-H. Hao, R. K. Stanzak, T. Eaton, H. H. Samuels, and J. Usala 1993. An arginine to histidine mutation in codon 311 of the c-erbAβ gene results in a mutant thyroid hormone receptor which does not mediate a dominant negative phenotype. J. Clin. Invest. 91:538–546.
  • Guernsey, D. L., and J. Fisher 1990. Thyroid hormone and neoplastic transformation. Crit. Rev. Oncog. 1:389–408.
  • Hadzic, E., V. Desai-Yajnik, E. Helmer, S. Guo, S. Wu, N. Koudinova, J. Casanova, B. M. Raaka, and J. Samuels 1995. A 10-amino-acid sequence in the N-terminal A/B domain of thyroid hormone receptor α is essential for transcriptional activation and interaction with the general transcription factor TFIIB. Mol. Cell. Biol. 15:4507–4517.
  • Haines, D. S., J. E. Landers, L. J. Engle, and J. George 1994. Physical and functional interaction between wild-type p53 and mdm2 proteins. Mol. Cell. Biol. 14:1171–1178.
  • Halperin, Y., M. I. Surks, and J. Shapiro 1990. l-Triiodothyronine (T3) regulates cellular growth rate, growth hormone production, and levels of nuclear T3 receptors via distinct dose-response ranges in cultured GC cells. Endocrinology 126:2321–2326.
  • Haupt, Y., R. Maya, A. Kazaz, and J. Oren 1997. Mdm2 promotes the rapid degradation of p53. Nature 387:296–299.
  • Hinds, P. W., C. A. Finlay, R. S. Quartin, S. J. Baker, E. R. Fearon, B. Vogelstein, and J. Levine 1990. Mutant p53 cDNAs from human colorectal carcinomas can cooperate with ras in transformation of primary rat cells: a comparison of the “hot spot” mutant phenotypes. Cell Growth Differ. 1:571–580.
  • Hodin, R., M. A. Lazar, B. I. Wintman, D. S. Darling, R. J. Koenig, P. R. Larsen, D. D. Moore, and J. Chin 1989. Identification of a thyroid hormone receptor that is pituitary-specific. Science 244:76–79.
  • Horowitz, Z. D., H. Sahnoun, A. Pascual, J. Casanova, and J. Samuels 1988. Analysis of photoaffinity label derivatives to probe thyroid hormone receptor in human fibroblasts, GH1 cells and soluble receptor preparations. J. Biol. Chem. 263:6636–6642.
  • Horowitz, Z. D., C.-R. Yang, B. M. Forman, J. Casanova, and J. Samuels 1989. Characterization of the domain structure of chick c-erbA by deletion mutation: in vitro translation and cell transfection studies. Mol. Endocrinol. 3:148–156.
  • Juven, T., Y. Barak, A. Zauberman, D. L. George, and J. Oren 1993. Wild-type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene. Oncogene 8:3411–3416.
  • Ko, L. J., and J. Prives 1996. p53: puzzle and paradigm. Genes Dev. 10:1054–1072.
  • Kubbutat, M. H., S. N. Jones, and J. Vousden 1997. Regulation of p53 stability by Mdm2. Nature 387:299–303.
  • Landanyl, M., C. Cha, R. Lewis, S. C. Jhanwar, A. G. Hacos, and J. Healy 1993. MDM2 gene amplification in metastatic osteosarcoma. Cancer Res. 53:16–18.
  • Landers, J. E., D. S. Haines, J. F. Strauss III, and J. George 1994. Enhanced translation: a novel mechanism of mdm2 oncogene overexpression identified in human tumor cells. Oncogene 9:2745–2750.
  • Lazar, M. A. 1993. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr. Rev. 14:184–193.
  • Leveillard, T., and J. Wasylyk 1997. The MDM2 C-terminal region binds to TAFII250 and is required for MDM2 regulation of the cyclin A promoter. J. Biol. Chem. 272:30651–30661.
  • Marks, M. S., B.-Z. Levi, J. H. Segars, P. H. Driggers, S. Hirschfeld, T. Nagata, E. Appella, and J. Ozato 1992. H-2RIIBP expressed from a baculovirus vector binds to multiple hormone response elements. Mol. Endocrinol. 6:219–230.
  • Martin, K., D. Trouche, C. Hagemeler, T. S. Sorensen, N. B. L. Thangue, and J. Kouzarides 1995. Stimulation of E2F1/DP1 transcriptional activity by mdm2 oncoprotein. Nature 375:691–694.
  • Momand, J., G. P. Zambetti, D. C. Olson, D. George, and J. Levine 1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245.
  • Naar, A. M., J.-M. Boutin, S. M. Lipkin, V. C. Yu, J. M. Holloway, C. K. Glass, and J. Rosenfeld 1991. The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 65:1267–1279.
  • Oliner, J. D., K. W. Kinzler, P. S. Meltzer, D. George, and J. Vogelstein 1992. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83.
  • Olson, D., V. Marechal, J. Momand, J. Chen, C. Romocki, and J. Levine 1993. Identification and characterization of multiple mdm-2 proteins and mdm-2–p53 protein complexes. Oncogene 8:2353–2360.
  • Qi, J.-S., V. Desai-Yajnik, M. E. Greene, B. M. Raaka, and J. Samuels 1995. The ligand-binding domains of the thyroid hormone/retinoid receptor gene subfamily function in vivo to mediate heterodimerization, gene silencing, and transactivation. Mol. Cell. Biol. 15:1817–1825.
  • Qi, J.-S., V. Desai-Yajnik, Y. Yuan, and J. Samuels 1997. Constitutive activation of gene expression by thyroid hormone receptor results from reversal of p53-mediated repression. Mol. Cell. Biol. 17:7195–7207.
  • Samuels, H. H., B. M. Forman, Z. D. Horowitz, and J. Ye 1988. Regulation of gene expression by thyroid hormone. J. Clin. Invest. 81:957–967.
  • Sap, J., L. deMagistris, H. Stunnenberg, and J. Vennstrom 1990. A major thyroid hormone response element in the third intron of the rat growth hormone gene. EMBO J. 9:887–896.
  • Sap, J., A. Munoz, J. Schmitt, H. Stunnenberg, and J. Vennstrom 1989. Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product. Nature 340:242–244.
  • Scheffner, M., B. A. Werness, J. M. Huibregtse, A. J. Levine, and J. Howley 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 61:1129–1136.
  • Selmi, S., and J. Samuels 1991. Thyroid hormone receptor/c-erbA and v-erbA: a single amino acid difference in the C-terminal region influences dominant negative activity and receptor dimer formation. J. Biol. Chem. 266:11589–11593.
  • Shaulian, E., D. Resnitzky, O. Shifman, G. Blandino, A. Amsterdam, A. Yayon, and J. Oren 1997. Induction of Mdm2 and enhancement of cell survival by bFGF. Oncogene 15:2717–2725.
  • Soussi, T., C. C. deFromentel, and J. May 1990. Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5:945–952.
  • Sturzbecher, H. W., R. Brain, C. Addison, K. Rudge, M. Remm, M. Grimaldi, E. Keenan, and J. Jenkins 1992. A C-terminal α-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene 7:1513–1523.
  • Subler, M. A., D. W. Martin, and J. Deb 1994. Overlapping domains on the p53 protein regulate its transcriptional activation and repression functions. Oncogene 9:1351–1359.
  • Umesono, K., and J. Evans 1989. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57:1139–1146.
  • Umesono, K., V. Giguere, C. K. Glass, M. G. Rosenfeld, and J. Evans 1988. Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature 336:262–265.
  • Umesono, K., K. K. Murakami, C. C. Thompson, and J. Evans 1991. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D receptors. Cell 65:1255–1266.
  • Wang, L.-H., S. Y. Tsai, R. G. Cook, W. G. Beattle, M.-J. Tsai, and J. O’Malley 1989. COUP transcription factor is a member of the steroid receptor superfamily. Nature 340:163–166.
  • Wang, Y., M. Reed, P. Wang, J. E. Stenger, G. Mayr, M. E. Anderson, J. F. Schwedes, and J. Tegtmeyer 1993. p53 domains: identification and characterization of two autonomous DNA-binding regions. Genes Dev. 7:2575–2586.
  • Wu, X., J. H. Bayle, D. Olson, and J. Levine 1993. The p53–mdm-2 autoregulatory feedback loop. Genes Dev. 7:1126–1132.
  • Xiao, Z. X., J. Chen, A. J. Levine, N. Modjtahedi, J. Xing, W. R. Sellers, and J. Livingston 1995. Interaction between the retinoblastoma protein and oncoprotein mdm2. Nature 375:694–697.
  • Zambetti, G. P., J. Bargonetti, K. Walker, C. Prives, and J. Levine 1992. Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes Dev. 6:1143–1152.
  • Zauberman, A., D. Flusberg, V. Haupt, Y. Barak, and J. Oren 1995. A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res. 23:2584–2592.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.